Hntendendo

algoritmos

Um guia ilustrado para programadores
€ OULI'0S CUT10S0S

Aditya Y. Bhargava

I | (1 i .'I .'IIIII.}. !I
[Fi ks

g P EE

novatec | | ITITIIT:

AR U ATl Rt T RS A IR T R A A AR e

Entendendo

Um guiailustrado para programadores
€ Outros curiosos

Aditya Y. Bhargava

Novatec

Original English language edition published by Manning Publications Co., Copyright © 2015 by
Manning Publications. Portuguese-language edition for Brazil copyright © 2017 by Novatec
Editora. All rights reserved.

Edi¢do original em Inglés publicada pela Manning Publications Co., Copyright © 2015 pela
Manning Publications. Edi¢do em Portugués para o Brasil copyright © 2017 pela Novatec Editora.
Todos os direitos reservados.

© Novatec Editora Ltda. 2017.

Todos os direitos reservados e protegidos pela Lei 9610 de 19/02/1998. E proibida a reproducio
desta obra, mesmo parcial, por qualquer processo, sem prévia autorizagdo, por escrito, do autor e
da Editora.

Editor: Rubens Prates

Tradugio: BrodTec

Revisdo técnica: Nilo Menezes

Revisdo gramatical: Marta Almeida de Sa
Assistente editorial: Priscila A. Yoshimatsu
Editoracio eletrénica: Carolina Kuwabata

ISBN: 978-85-7522-662-9
Historico de edigdes impressas:
Abril/2017 Primeira edigdo

Novatec Editora Ltda.

Rua Luis Antonio dos Santos 110
02460-000 — S3o Paulo, SP — Brasil
Tel.: +55 11 2959-6529

Email: novatec@novatec.com.br
Site: www.novatec.com.br

Twitter: twitter.com/novateceditora
Facebook: facebook.com/novatec
LinkedIn: linkedin.com/in/novatec

mailto:novatec%40novatec.com.br?subject=
http://www.novatec.com.br/
http://twitter.com/novateceditora
http://facebook.com/novatec
http://linkedin.com/in/novatec

Para os meus pais, Sangeeta e Yogesh

Sumario

Prefacio
Agradecimentos
Sobre este livro

1 Introducao a algoritmos

Introducao
O gue voceé aprenderd sobre desempenho
O gue voceé aprenderad sobre a solucao de problemas
Pesquisa bindria
Uma maneira melhor de buscar
Tempo de execucao
Notacao Big O
Tempo de execucao dos algoritmos cresce a taxas diferentes
Vendo diferentes tempos de execucao Big O
A notacao Big O estabelece o tempo de execucao para a pior hipdtese
Alguns exemplos comuns de tempo de execucao Big O
O caixeiro-viajante
Recapitulando

2 Ordenacao por selecao

Como funciona a memoria
Arrays e listas encadeadas

Listas encadeadas
Arrays
Terminologia
Inserindo algo no meio da lista
Delecoes
Ordenacao por selecao
Recapitulando

3 Recursao

Recursao

Caso-base e caso recursivo
A pilha

A pilha de chamada

A pilha de chamada com recursao
Recapitulando

4 Quicksort

Dividir para conquistar
Quicksort
Notacao Big O revisada

Merge sort versus guicksort
Caso médio versus pior caso

Recapitulando

5 Tabelas hash

Funcdes hash

Utilizacao
Usando tabelas hash para pesquisas
Evitando entradas duplicadas
Utilizando tabelas hash como cache
Recapitulando

Colisoes
Desempenho

Fator de carga
Uma boa funcao hash

Recapitulando

6 Pesquisa em largura

Introducao a grafos

O que é um grafo?

Pesquisa em largura
Encontrando o caminho minimo
Filas

Implementando o grafo

Implementando o algoritmo
Tempo de execucao
Recapitulando

7 Algoritmo de Dijkstra

Trabalhando com o algoritmo de Dijkstra
Terminologia

Adquirindo um piano

Arestas com pesos hegativos
Implementacao

Recapitulando

8 Algoritmos gulosos

O problema do cronograma da sala de aula

O problema da mochila

O problema da cobertura de conjuntos
Algoritmos de aproximacao

Problemas NP-completos

Caixeiro-viajante, passo a Passo
Como faco para saber se um problema é NP-completo?

Recapitulando

9 Programacao dindmica

O problema da mochila
A solucao simples
Programacao dinamica
Perguntas frequentes sobre o problema da mochila

O gue acontece se vocé adicionar um item?

O gue acontece se vocé modificar a ordem das linhas?

E possivel preencher a tabela a partir das colunas, em vez de a partir das
linhas?

O gue acontece se vocé adicionar um item menor?

Vocé consegue roubar fracdes de um item?

Otimizando o seu itinerdrio de viagem

Lidando com itens com interdependéncia

E possivel que a solucdo requeira mais de dois subproblemas?

E possivel que a melhor solucdo ndo utilize a capacidade total da mochila?
Maior substring comum

Criando a tabela

Preenchendo a tabela

A solucao

Maior subsegquéncia comum

Maior subsequéncia comum = solucao
Recapitulando

10 K-vizinhos mais préoximos

Classificando laranja versus toranjas
Criando um sistema de recomendacoes

Extracdo de caracteristicas

Regressao

Escolhendo boas caracteristicas
Introducao ao aprendizado de maquina

OCR

Criando um filtro de spam

Prevendo a bolsa de valores

Recapitulando

11 Préximos passos

Arvores

indices invertidos

A transformada de Fourier
Algoritmos paralelos
MapReduce

Por que os algoritmos distribuidos sao uteis?
Funcdo map
Funcao reduce
Filtro de Bloom e HyperLoglLog
Filtros de Bloom

HyperLoglog
Algoritmos SHA

Comparando arquivos
Verificando senhas

Hash sensitivo local

Troca de chaves de Diffie-Hellman
Programacao linear

Epilogo

Respostas dos exercicios

Prefacio

Comecei a programar como um hobby. O livro Visual Basic 6 for Dummies
me ensinou o basico, e continuei a ler outros livros para aprender mais.
Porém o tema algoritmos era incompreensivel para mim. Eu me lembro de
ler os sumarios dos meus primeiros livros de algoritmos e pensar
“finalmente vou entender este assunto!”. No entanto, era um conteido muito
denso, e desisti depois de algumas semanas. Foi quando tive o meu primeiro
professor bom de algoritmos que eu percebi o quao simples e elegantes eles
eram.

Alguns anos atras, escrevi a minha primeira postagem ilustrada em um blog.
Eu aprendo melhor com imagens, e gostei muito do estilo ilustrado. Desde
entdo, tenho feito algumas postagens ilustradas sobre programacao
funcional, Git, aprendizado de maquina e concorréncia. A propdsito, eu era
um escritor mediocre quando comecei. Explicar conceitos técnicos é dificil.

Criar bons exemplos e descrever conceitos complicados sdo atividades que
levam tempo. Sendo assim, é mais facil passar por cima da parte
complicada. Achava que estava fazendo um trabalho muito bom até que um
dia, depois de uma de minhas postagens ter ficado famosa, um colega de
trabalho me disse “Eu li o seu texto e ainda ndo entendi isso”. Foi quando
percebi que eu ainda tinha muito a aprender para me aprimorar.

Em algum momento enquanto escrevia essas postagens para o blog, a
Manning entrou em contato comigo e perguntou se eu queria produzir um
livro ilustrado. Bem, acontece que os editores da Manning sabem muito bem
como explicar conceitos técnicos, e eles me ensinaram como ensinar. Escrevi
este livro para sanar um problema pessoal: queria um livro que explicasse
bem os conceitos técnicos dificeis, além de apresentar algoritmos faceis de
ser compreendidos. Melhorei muito a minha escrita desde aquela primeira
postagem, e espero que vocé ache este livro de leitura facil e informativa.

Agradecimentos

Agradeco a Manning por ter me dado a oportunidade de escrever este livro
e por me proporcionar muita liberdade criativa. Agradeco aos meus editores
Marjan Bace e Mike Stephens por me manterem na linha, ao Bert Bates por
me ensinar a escrever e a Jennifer Sout por ser uma editora incrivel,
responsavel e prestativa. Agradeco também a todo o time de producao da
Manning: Kevin Sullivan, Mary Piergies, Tiffany Taylor, Leslie Haimes e aos
outros nos bastidores. Além disso, quero dizer obrigado a todos os que
leram o manuscrito e deram sugestdes: Karen Bensdon, Rob Green, Michael
Hamrah, Ozren Harlovic, Colin Hastie, Christopher Haupt, Chuck
Henderson, Pawel Kozlowski, Amit Lamba, Jean-Frangois Morin, Robert
Morrison, Sankar Ramanathan, Sander Rossel, Doug Sparling e Damien
White.

Obrigado a todos que me ajudaram a chegar até aqui: aos meus amigos da
Flaskhit game board, por me ensinarem a programar, aos varios amigos que
me ajudaram a revisar os capitulos, me dando conselhos e me permitindo
testar diferentes formas de explicar um assunto, incluindo Ben Vinegar, Karl
Puzon, Alex Manning, Esther Chan, Anish Bhatt, Michael Glass, Nikrad
Mahdi, Charles Lee, Jared Friedman, Hema Manickavasagam, Hari Raja,
Murali Gudipati, Srinivas Varadan e outros. Obrigado, Gerry Brady, por me
ensinar algoritmos. Outro grande obrigado para as escolas de algoritmos
como a CLRS, a Knuth e a Strang. Eu estou realmente em pé sobre os
ombros dos gigantes.

Pai, mae, Priyanka e o resto da familia: obrigado pelo apoio constante. E
muito obrigado a minha esposa Maggie. Ha muitas aventuras pela frente, e
algumas delas nao envolvem ficar em casa em uma sexta-feira a noite
reescrevendo paragrafos.

Finalmente, um grande obrigado a todos os leitores que deram uma chance
a este livro e aos leitores que me deram um feedback no forum. Vocés
realmente me ajudaram a tornar este livro melhor.

Sobre este livro

Este livro foi criado para ser de facil leitura. Eu evito grandes fluxos de
pensamento. Toda vez que um conceito é introduzido, eu o explico de forma
direta ou aviso quando vou explica-lo. Os conceitos mais importantes sdo
reforcados por meio de exercicios e diversas explana¢des para que vocé
possa checar suas ideias e ter certeza de que esta no caminho certo.

Eu ensino com exemplos. Em vez de escrever um monte de simbolos, meu
objetivo é fazer com que vocé visualize os conceitos. Também acredito que
aprendemos melhor quando conseguimos fazer uma relagdo com algo que ja
conhecemos, e com os exemplos fica mais facil fazer essa rela¢ao. Logo,
quando estiver tentando lembrar-se da diferenca entre arrays e listas
encadeadas (explicado no Capitulo 2), vocé podera fazer isso sentado, vendo
um filme. Além do mais, corro o risco de cair no dbvio, mas gosto de
aprender com imagens. Este livro é cheio delas.

O contetudo deste livro foi cuidadosamente escolhido. Nao ha necessidade
de escrever um livro que aborda todos os tipos de algoritmos — para isso
temos a Wikipédia e a Khan Academy. Todos os algoritmos que inclui neste
livro sdo exequiveis. Eu os acho tteis no meu trabalho como um engenheiro
de software e eles fornecem uma boa base para tépicos mais complexos. Boa
leitura!

Roteiro
Os primeiros trés capitulos deste livro constituem-se no seguinte:

« Capitulo 1 — Vocé aprendera seu primeiro algoritmo pratico: a pesquisa
bindria. Também aprendera a analisar a velocidade de um algoritmo
utilizando a notagao Big O, que ¢ utilizada durante todo o livro para
avaliar o quao rapido ou lento um algoritmo é.

« Capitulo 2 — Vocé aprendera duas estruturas de dados fundamentais:
arrays e listas encadeadas. Essas estruturas sdo utilizadas no livro e
também sdo usadas para criar estruturas de dados mais avancadas, como
as tabelas hash (Capitulo 5).

« Capitulo 3 — Vocé aprendera recursao, uma técnica util usada em muitos
algoritmos (como o quicksort, abordado no Capitulo 4).

Do meu ponto de vista, a notagao Big O e a recursdo sdo topicos
desafiadores para iniciantes. Entdo decidi diminuir o ritmo e dedicar um
tempo extra a estas secoes.

O restante do livro apresenta algoritmos de aplicagdo mais ampla:

« Técnicas para resolucao de problemas — Abordadas nos Capitulos 4, 8 e 9.
Se deparar com um problema e nao tiver certeza sobre como resolvé-lo de
maneira eficiente, tente a divisao e a conquista (Capitulo 4) ou a
programacao dinamica (Capitulo 9). Ou vocé pode perceber que nao
existe uma solucao eficiente e obter uma resposta aproximada utilizando o
algoritmo guloso no lugar (Capitulo 8).

« Tabelas hash - Abordadas no Capitulo 5. Uma tabela hash é uma estrutura
de dados muito util. Ela contém conjuntos de chaves e valores associados,
como o nome e o0 endereco de email de uma pessoa, ou um usuario
associado a uma senha. E dificil descrever a utilidade das tabelas hash.
Quando quero resolver um problema, comeco com dois planos de ataque:
“Posso usar tabela hash?” e “Posso modelar isso como um grafo?”.

« Algoritmos de grafos - Abordados nos Capitulos 6 e 7. Grafos sdo uma
maneira de modelar uma rede: uma rede social, uma rede de estradas,
uma rede de neuronios ou qualquer outro conjunto de conexdes. A
pesquisa em largura (Capitulo 6) e o algoritmo de Dijkstra (Capitulo 7)
sdo maneiras de diminuir a distancia entre dois pontos em uma rede. Vocé
pode usar essa abordagem para calcular os graus de separagdo entre duas
pessoas ou o caminho mais curto de um ponto a outro em uma rota.

o K-vizinhos mais préximos (KNN, K-nearest neighbors) — Abordado no
Capitulo 7. Essa é uma técnica simples de aprendizado de maquina. Vocé
pode usar a técnica KNN para criar recomendagdes de sistema, um
mecanismo OCR ou um sistema para prever os valores da bolsa de valores
— na verdade, tudo que envolve prever um valor, por exemplo, “nds
achamos que a critica dara 4 estrelas para este filme”. Vocé pode utiliza-la,
ainda, para classificar um objeto, por exemplo, “esta é a letra Q"

« Préximos passos — O Capitulo 11 discorre sobre dez algoritmos que valem
a pena para uma leitura posterior.

Como usar este livro

A ordem dos contetudos deste livro foi cuidadosamente projetada. Se vocé
tem interesse em um tépico especifico, sinta-se livre para pular para ele.
Caso contrario, leia os capitulos na ordem - eles se baseiam um no outro.

Recomendo fortemente que vocé execute os cddigos dos exemplos. Nao
consigo reforcar isso o suficiente. Apenas redigite os codigos ou baixe-os em
github.com/egonschiele/grokking_algorithms! e os execute. Vocé reterd
melhor o conteudo se o fizer.

Também recomendo que vocé faga os exercicios deste livro. Os exercicios
sdo curtos — geralmente levam de um a dois minutos, algumas vezes de
cinco a dez minutos. Eles o ajudarao a conferir o seu pensamento, assim
vocé sabera se estd fora da linha de pensamento antes de seguir adiante.

Quem deve ler este livro

Este livro € para qualquer um que queira entender o basico de programacgdo
e se familiarizar com algoritmos. Talvez vocé ja tenha um problema de
programacao e esteja tentando descobrir a solu¢ao algoritmica. Ou talvez
queira entender para que os algoritmos sdo uteis. Aqui estd uma lista curta e
incompleta de pessoas que provavelmente achardo este livro util.

« programadores hobistas
« estudantes de cursos de programagao
« graduados em ciéncias da computagdo que queiram refrescar a memoria

o fisicos/matematicos/outros profissionais que tenham interesse em
programacao

Convencodes de programacao e downloads

Todos os exemplos deste livro utilizam o Python 2.7. Todos os codigos deste
livro sdo apresentados em uma fonte monoespacada como esta parase
diferenciar do texto comum. Algumas anota¢des acompanham os c6digos,
destacando conceitos importantes.

Vocé pode baixar os cddigos dos exemplos deste livro no site da editora
emmanning.com/books/grokking-algorithms ou em
github.com/egonschiele/grokking_algorithms.

Acredito que vocé aprende melhor quando realmente gosta de aprender —

entdo divirta-se e execute os codigos!

Sobre o autor

Aditya Bhargava ¢ um engenheiro de software na Etsy, um mercado online
de produtos artesanais. Ele ¢ formado em Ciéncias da Computagao pela
University of Chicago. Bhargava também ¢ autor de um blog ilustrado de
tecnologia em adit.io.

Como entrar em contato conosco

Envie seus comentarios e suas duvidas sobre este livro a editora escrevendo
para: novatec@novatec.com.br.

Temos uma pagina web para este livro na qual incluimos erratas, exemplos e
quaisquer outras informacgoes adicionais.

« Pagina da edi¢ao em portugués:
https://novatec.com.br/livros/entendendo-algoritmos
« Pagina da edicdo original em inglés:
www.manning.com/books/grokking-algorithms

Para obter mais informacodes sobre os livros da Novatec, acesse nosso site:
https://novatec.com.br.

1 O autor do livro disponibilizou no GitHub o c6digo-fonte em varias linguagens de
programacao: C#, Python, Ruby, Java, Javascript e Swift, em seu formato original (em
inglés). O cédigo-fonte no livro foi traduzido para o portugués, assim como todas as
imagens e ilustracdes visando facilitar o entendimento pelo leitor.

1

Introducao a algoritmos

Neste capitulo

- Vocé tera acesso ao fundamental para compreender o restante do
livro.

- Escrevera seu primeiro algoritmo de busca (pesquisa binaria).

- Aprendera como falar sobre o tempo de execucao de um algoritmo
(na notagao Big O).

- Serd apresentado a uma pratica comum para projetar algoritmos
(recursao).

Introducao

Um algoritmo é um conjunto de instrugdes que realizam uma tarefa. Cada
trecho de cddigo poderia ser chamado de um algoritmo, mas este livro trata
dos trechos mais interessantes. Escolhi os algoritmos apresentados neste
livro porque eles sdo rapidos ou porque resolvem problemas interessantes,
ou por ambos 0s motivos. A seguir estdo descritos alguns pontos
importantes que serdo demonstrados.

o O Capitulo 1 aborda pesquisa bindria e mostra como um algoritmo pode
acelerar o seu c6digo. Em um dos exemplos, o numero de etapas
necessarias passa de 4 bilhdes para 32 etapas!

« Um dispositivo de GPS utiliza algoritmos de grafos (que vocé aprendera
nos Capitulos 6, 7 e 8) para calcular a rota mais curta até o seu destino.

e Vocé pode usar a programacgdo dinamica (ver Capitulo 9) para escrever
um algoritmo de IA (inteligéncia artificial) que joga damas.

Em cada caso, descreverei o algoritmo e apresentarei um exemplo. Em
seguida, falarei sobre o tempo de execu¢do do algoritmo em notagdo Big O.
Por fim, serdo explorados os demais tipos de problemas que poderiam ser
solucionados com o mesmo algoritmo.

O que vocé aprendera sobre desempenho

Tenho uma boa noticia: uma implementacao de cada algoritmo apresentado
neste livro provavelmente estara disponivel em sua linguagem favorita,
portanto vocé ndo tera que escrever cada algoritmo! Porém essas
implementagdes serdo intuteis caso vocé ndo entenda o desempenho dos
algoritmos. Neste livro, vocé aprendera como comparar o desempenho de
diferentes algoritmos: Vocé deve utilizar merge sort (ordenagdo por mistura)
ou quicksort (ordenacgao rapida)? Vocé deve utilizar um array ou uma lista?
A escolha da estrutura de dados pode fazer uma grande diferenga.

O que vocé aprendera sobre a solucao de problemas

Vocé aprenderad técnicas para resolucao de problemas que poderiam estar
fora da sua gama de habilidades até agora, como por exemplo:

o Se vocé gosta de criar jogos, podera desenvolver um sistema de
inteligéncia artificial (IA) que segue o usuario utilizando algoritmos
graficos.

o Vocé aprendera a criar um sistema de recomendagdes utilizando os K-
vizinhos mais préoximos.

o Alguns problemas nio podem ser resolvidos em um tempo habil! A parte
deste livro que trata de problemas NP-completos demonstra como
identificar estes problemas e como criar um algoritmo que forne¢a uma
resposta aproximada.

Ao terminar de ler este livro, provavelmente, vocé conhecera alguns dos
algoritmos de maior aplicabilidade. Assim, podera usar os seus
conhecimentos para aprender sobre algoritmos mais especificos para IA,
bancos de dados etc. Além disso, podera encarar grandes desafios em seu
trabalho.

O que vocé precisa saber

Vocé devera conhecer algebra basica antes de iniciar a leitura deste livro. Em particular,
partindo da fungdo f(x) = x x 2, qual sera o valor de f(5)? Se respondeu 10, vocé esta pronto.

Além de tudo, este capitulo (e este livro) sera compreendido mais facilmente se vocé
conhecer alguma linguagem de programagdo. Todos os exemplos deste livro foram escritos
em Python, assim, caso vocé ndo conhega nenhuma linguagem de programacgio e queira
aprender uma, escolha Python, pois ela ¢ 6tima para iniciantes. Se vocé conhece alguma
outra linguagem, como a Ruby;, se saira bem.

Pesquisa binaria

Vamos supor que vocé esteja procurando o nome de uma pessoa em uma
agenda telefonica (que frase antiquada!). O nome comega com K. Vocé pode
comegar na primeira pagina da agenda e ir folheando até chegar aos Ks.
Porém vocé provavelmente vai comecar pela metade, pois sabe que os Ks
estardo mais perto dali.

Ou suponha que esteja procurando uma palavra que comeca com O em um
dicionario. Novamente, vocé comeca a busca pelo meio.

Agora, imagine que vocé entre no Facebook. Quando faz isso, o Facebook
precisa verificar que vocé tem uma conta no site. Logo, ele procura seu
nome de usudrio em um banco de dados. Digamos que seu usudrio seja
karlmageddon. O Facebook poderia comegar pelos As e procurar seu nome
— mas faz mais sentido que ele comece a busca pelo meio.

Isto é um problema de busca. E todos estes casos usam um algoritmo para
resolvé-lo: pesquisa bindria.

A pesquisa binaria é um algoritmo. Sua entrada é uma lista ordenada de
elementos (explicarei mais tarde por que motivo a lista precisa ser
ordenada). Se o elemento que vocé estd buscando esta na lista, a pesquisa
bindria retorna a sua localizacdao. Caso contrario, a pesquisa binaria retorna
None.

Por exemplo:

NULL

Procurando empresas em uma agenda com a pesquisa binaria.

Eis um exemplo de como a pesquisa bindria funciona. Estou pensando em
um ndamero entre 1 e 100.

El 3] Jieo]

Vocé deve procurar adivinhar o meu niimero com o menor nimero de
tentativas possivel. A cada tentativa, digo se vocé chutou muito para cima,
muito para baixo ou corretamente.

Digamos que comegou tentando assim: 1, 2, 3, 4... Veja como ficaria.

Uma tentativa ruim de acertar o numero.

Isso se chama pesquisa simples (talvez pesquisa estupida seja um termo

melhor). A cada tentativa, vocé esta eliminando apenas um nimero. Se o

meu numero fosse 0 99, vocé precisaria de 99 chances para acerta-lo!

Uma maneira melhor de buscar

Aqui esta uma técnica melhor. Comece com 50.

s52] 53] -~

(oo}

ToboS ESTES SAD
BATINOS DEMATIS!

Muito baixo, mas vocé eliminou metade dos nimeros! Agora, vocé sabe que

os numeros de 1 a 50 sao muito baixos. Proximo chute: 75.

Muito alto, mas novamente vocé pode cortar metade dos nimeros restantes!
Com a pesquisa bindria, vocé chuta um numero intermedidrio e elimina a
metade dos niimeros restantes a cada vez. O proximo numero é o 63 (entre 50

e 75).
63

A

Isso é a pesquisa bindria. Vocé acaba de aprender um algoritmo! Aqui esta a
quantidade de nimeros que vocé pode eliminar a cada tentativa.

| 1p9 Imslﬁ@—}—?@—;@—y-—?@em

7 ETAPAS

Elimine metade dos numeros a cada tentativa com a pesquisa binaria.

Seja qual for o nimero que eu estiver pensando, vocé pode adivinha-lo em
um maximo de sete tentativas — porque a pesquisa binaria elimina muitas
possibilidades!

Suponha que vocé esteja procurando uma palavra em um diciondrio. O
diciondrio tem 240.000 palavras. Na pior das hipéteses, de quantas etapas
vocé acha que a pesquisa precisaria?

PESQUISA SIMPLES: ETAPAS
PESQUISA BINARIA: ETAPAS

A pesquisa simples poderia levar 240.000 etapas se a palavra que vocé
estivesse procurando fosse a ultima do dicionario. A cada etapa da pesquisa
bindria, vocé elimina o nimero de palavras pela metade até que s6 reste uma
palavra.

.[mw —(120«|— [s2K| — [38¢| > [15K] > [7.5K])>[3750
(4— | 112 I - \235|¢_ 469]J:--r.-)
L | 5

\

S

|s¢—‘r15——:i%—»_4|——?2_ =i

}il\

12 ETAPAS

Logo, a pesquisa bindria levaria apenas 18 etapas — uma grande diferencal
De maneira geral, para uma lista de n nameros, a pesquisa bindria precisa de
log,n para retornar o valor correto, enquanto a pesquisa simples precisa de n

etapas.

Logaritmos
Vocé pode nao se lembrar de logaritmos, mas provavelmente lembra-se de como calcular
exponenciais. A expressao log;, 100 basicamente diz: “Quantos 10s conseguimos multiplicar

para chegar a 100?”. A resposta é 2: 10 x 10. Entao, log;(100 = 2. Logaritmos sao o oposto de

exponenciais.

10199 « LOQ.szz
15 1999 o Log 1990 -3
7 -8 o logB-3
7 =16 & logl6 =4

2) o legi2-5

Logaritmos sdo o oposto de exponenciais.
Neste livro, quando falamos sobre a notagdo Big O (explicada daqui a pouco), levamos em
conta que log sempre significa log,. Quando vocé procura um elemento usando a pesquisa

simples, no pior dos casos, tera de analisar elemento por elemento, passando por todos. Se for
uma lista de oito elementos, precisaria checar no maximo oito numeros. Na pesquisa bindria,

precisa verificar log n elementos para o pior dos casos. Para uma lista de oito elementos, log 8
== 3, porque 23 == 8. Ento, para uma lista de oito numeros, precisaria passar por, no

méximo, trés tentativas. Para uma lista de 1.024 elementos, log 1.024 == 10, porque 2* ==
1.024. Logo, para uma lista de 1.024 niimeros, precisaria verificar no maximo dez deles.

Nota

Falarei muito sobre logaritmos neste livro. Portanto vocé deve entender o conceito. Se nao
entender, a Khan Academy (khanacademy.org) tem um video legal que esclarece muita
coisa.

Nota

A pesquisa binaria s6 funciona quando a sua lista esta ordenada. Por exemplo, os nomes
em uma agenda telefénica estdao em ordem alfabética, entao vocé pode utilizar a pesquisa
binaria para procurar um nome. O que aconteceria se a lista nao estivesse ordenada?

Vamos ver como escrever a pesquisa binaria em Python. O exemplo de
cddigo que utilizamos aqui usa arrays. Se ndo sabe como eles funcionam,
nao se preocupe; abordaremos isso no proximo capitulo. Vocé sé precisa
saber que pode armazenar uma sequéncia de elementos em uma linha de
buckets consecutivos que se chama array. Os buckets sao numerados a partir
do 0: o primeiro bucket esta na posi¢dao #0; o segundo, em #1; o terceiro, em
#2, e assim por diante.

A funcao pesquisa_binaria pega um array ordenado e um item. Se o item
esta no array, a fungdo retorna a sua posi¢ao. Dessa maneira, vocé é capaz de
saber por qual ponto do array deve continuar procurando. No comego, o
cddigo do array segue assim:

baixo = 0
alto = len(lista) - 1

' BAIXO ALTO

J \

T
_,N__.)

ESTES SAO TODOS 05
NUMEROS NO5 @UATS
A BUSCA E REALIZADA

A cada tentativa, vocé testa para o elemento central.

meio = (baixo + alto) / 2 ©
chute = lista[meio]

® meio sera arredondado para baixo automaticamente pelo Python se (baixo +
alto) nao for um numero par.

Se o chute for muito baixo, vocé atualizara a variavel baixo
proporcionalmente:

if chute < item:
baixo = meio + 1

E se o chute for muito alto, vocé atualizara a variavel alto. Aqui estd o
cddigo completo:

def pesquisa _binaria(lista, item):
baixo = 0 @
alto = len(lista) - 1 @

while baixo <= alto: ®
meio = (baixo + alto) / 2 ®
chute = lista[meio]
if chute == item: @
return metio
if chute > item: ©

alto = meio - 1
else: O
baixo = meio + 1
return None @

minha_lista = [1, 3, 5, 7, 9] ®
print pesquisa_binaria(minha_lista, 3) # => 1 ©
print pesquisa_binaria(minha_lista, -1) # => None @
® baixo e alto acompanham a parte da lista que vocé esta procurando.
® Enquanto ainda nao conseguiu chegar a um unico elemento...
® ... verifica o elemento central.
® Acha o item.
® O chute foi muito alto.
® O chute foi muito baixo.
@ O item nao existe.
® Vamos testa-lo!
©® Lembre-se, as listas comecam no 0. O préoximo endereco tem indice 1.
@ “None” significa nulo em Python. Ele indica que o item nao foi encontrado.

EXERCICIOS

1.1 Suponha que vocé tenha uma lista com 128 nomes e esteja fazendo uma
pesquisa binaria. Qual seria o nimero maximo de etapas que vocé levaria
para encontrar o nome desejado?

1.2 Suponha que vocé duplique o tamanho da lista. Qual seria o numero
maximo de etapas agora?

Tempo de execucao

Sempre que falo sobre um algoritmo, falo sobre o seu tempo de execugao.
Geralmente, vocé escolhe o algoritmo mais eficiente — caso esteja tentando
otimizar tempo e espago.

Voltando a pesquisa simples, quanto tempo se otimiza utilizando-a? Bem, a
primeira abordagem seria verificar numero por niimero. Se fosse uma lista
de 100 nimeros, precisariamos de 100 tentativas. Se fosse uma lista de 4
bilhdes de numeros, precisariamos de 4 bilhdes de tentativas. Logo, o
numero maximo de tentativas é igual ao tamanho da lista. Isso é chamado
de tempo linear.

A pesquisa binaria é diferente. Se a lista tem 100 itens, precisa-se de, no
maximo, sete tentativas. Se tem 4 bilhdes, precisa-se de, no maximo, 32
tentativas. Poderoso, ndo? A pesquisa bindria é executada com tempo
logaritmico. A tabela a seguir resume as nossas descobertas até agora.

PESQUISA PESQUISA

SIMPLES BINARIA -\
= DG‘N} ‘b@..
100 ITENS 100 ITENS

) v <

100 PALPITES 7 PALPITES

—

4.000.000.000 | 4.000.000.000 a0
5

ITENS ITENS
4 4 0
4.000.000.000 32 PALPITES
PALPITES || 5
._._.——'—"""_'F-“‘ TN

O O(Logw
. 4

TEMPO DE TEMPO DE EXECUSGAO
EXECUSAO LINEAR LoaarfTmIco

Tempo de execucdo para algoritmos de pesquisa.

Notacao Big O

A notagdo Big O é uma notagao especial que diz o quao rapido é um
algoritmo. Mas quem liga para isso? Bem, acontece que vocé
frequentemente utilizara o algoritmo que outra pessoa fez — e quando faz
isso, ¢ bom entender o quao rapido ou lento o algoritmo é. Nesta secdo,
explicarei como a notagdo Big O funciona e fornecerei uma lista com os
tempos de execugdo mais comuns para os algoritmos.

Tempo de execucao dos algoritmos cresce a taxas diferentes

Bob estd escrevendo um algoritmo para a NASA. O algoritmo dele entrard
em acao quando o foguete estiver prestes a pousar na lua, e ele o ajudara a
calcular o local de pouso.

Este é um exemplo de como o tempo de execu¢ao de dois algoritmos pode
crescer a taxas diferentes. Bob esta tentando decidir entre a pesquisa simples
e a pesquisa binaria. O algoritmo precisa ser tdo rapido quanto correto. Por
um lado, a pesquisa binaria é mais rapida, o que é bom, pois Bob tem apenas
10 segundos para descobrir onde pousar, ou o foguete saira de seu curso. Por
outro lado, é mais facil escrever a pesquisa simples, o que gera um risco
menor de erros. Bob nao quer mesmo erros no seu cddigo! Para ser ainda
mais cuidadoso, Bob decide cronometrar ambos os algoritmos com uma
lista de 100 elementos.

Vamos presumir que leva-se 1 milissegundo para verificar um elemento.

Com a pesquisa simples, Bob precisa verificar 100 elementos, entdo a busca
leva 10 ms para rodar. Em contrapartida, ele precisa verificar apenas sete
elementos na pesquisa bindria (log, 100 é aproximadamente 7), logo, a

pesquisa bindria leva 7 ms para ser executada. Porém, realisticamente
falando, a lista provavelmente tera em torno de 1 bilhdo de elementos. Se a
lista tiver esse numero, quanto tempo a pesquisa simples levara para ser
executada? E a pesquisa binaria? Tenha certeza de que sabe a resposta para
essa pergunta antes de continuar lendo.

PESQUISA SIMPLES PESQUISA BINARIA

lﬂﬁ S ?rni

Tempo de execucao para pesquisa simples vs. pesquisa bindria para
uma lista de 7100 elementos.

Bob executa a pesquisa bindria com 1 bilhdo de elementos e leva 30 ms (log,

1.000.000.000 é aproximadamente 30). “30 ms!” — ele pensa. “A pesquisa
bindria é quase 15 vezes mais rapida do que a pesquisa simples, porque a
pesquisa simples levou 100 ms para uma lista de 100 elementos e a pesquisa
bindria levou sé 7 ms. Logo, a pesquisa simples levara 30 x 15 = 450 ms,
certo? Bem abaixo do meu limite de 10 segundos.” Bob decide utilizar a
pesquisa simples. Ele fez a escolha certa?

Nao. Bob esta errado. Muito errado. O tempo de execugdo para a pesquisa
simples para 1 bilhdo de itens é 1 bilhdo ms, ou seja, 11 dias! O problema é
que o tempo de execu¢ao da pesquisa simples e da pesquisa bindria cresce
com taxas diferentes.

PESQUISA SIMPLES | PESQUISA BINARIA

100 ELEMENTOS 100ms Fras

e -_— — W T e wew e

10000 ELEMENTOS 10 segundes 14 ws

e T S, L
g —‘—-.--._

1,000,000,000 ELEMENTOS AL Las 22 s

Tempos de execucdo crescem com velocidades diferentes!

Sendo assim, conforme o numero de itens cresce, a pesquisa bindria
aumenta s6 um pouco o seu tempo de execugdo. Ja a pesquisa simples leva
muito tempo a mais. Logo, conforme a lista de nimeros cresce, a pesquisa
bindria se torna muito mais rapida do que a pesquisa simples. Bob pensou
que a pesquisa bindria fosse 15 vezes mais rapida que a pesquisa simples,
mas isso estd incorreto. Se a lista tem 1 bilhdo de itens, o tempo de execucao
¢ aproximadamente 33 milhdes de vezes mais rapido. Por isso, ndo basta
saber quanto tempo um algoritmo leva para ser executado — vocé precisa
saber se o tempo de execucio aumenta conforme a lista aumenta. E ai que a
notacao Big O entra.

A notagdo Big O informa o quao rapido é um algoritmo. Por exemplo,
imagine que vocé tem uma lista de tamanho n. O tempo de execugdo na
notacdo Big O é O(n). Onde estdao os segundos? Eles nao existem - a
nota¢do Big O nao fornece o tempo em segundos. A notagdo Big O permite
que vocé compare o niimero de operagoes. Ela informa o quao rapidamente
um algoritmo cresce.

Temos outro exemplo disso. A pesquisa bindria precisa de log n operagoes

para verificar uma lista de tamanho n. Qual é o tempo de execucio na
notagio Big O? E O(log n). De maneira geral, a notagdo Big O é escrita da
seguinte forma:

"Bie O

O formato da notacéo Big O.
Isso fornece o numero de opera¢des que um algoritmo realiza. E chamado
de notagdo Big O porque coloca-se um “grande O” na frente do nimero de
operagdes (parece piada, mas é verdade!).
Agora, vamos ver alguns exemplos. Veja se consegue descobrir o tempo de
execu¢ao para esses algoritmos.

Vendo diferentes tempos de execucao Big O

Aqui segue um exemplo prético que vocé pode reproduzir em casa com um
pedaco de papel e um lapis. Suponha que vocé tenha que desenhar uma
grade com 16 divisoes.

Qual é um bom algoritmo para desenhar essa grade?

Algoritmo 1

Uma forma de desenhar essa grade de 16 divisdes é desenhar uma divisao de
cada vez. Lembre-se, a nota¢do Big O conta o numero de operagdes. Nesse
exemplo, desenhar uma divisdo é uma operagdo. Vocé precisa desenhar 16
divisdes. Quantas operacdes vocé tera de fazer se desenhar uma divisao por
vez?

Desenhando a grade executando uma divisdo por vez.

E necessério passar por 16 etapas para desenhar 16 divises. Qual é o tempo
de execugao desse algoritmo?

Algoritmo 2

Tente agora este algoritmo. Dobre o papel.

Neste exemplo, dobrar o papel uma vez é uma operagdo. Vocé fez duas
divisdes com essa opera¢ao!

Dobre o papel de novo, de novo e de novo.

-

Desdobre depois de quatro dobras e vocé tera uma bela grade! A cada dobra,
o numero de divisdes duplica. Vocé fez 16 divisdes com quatro operagdes!

1 oopra 7 voBras 3 boBRAS A‘ DOBRAS
J J & v

Desenhando uma grade com quatro dobras.

Vocé pode “desenhar” duas vezes mais divisdes a cada dobra, logo, vocé
pode desenhar 16 divisdes em quatro etapas. Qual é o tempo de execucao
para esse algoritmo? Encontre o tempo de execugdo dos dois algoritmos
antes de seguir adiante.

Respostas: O Algoritmo 1 tem tempo de execu¢do O(n) e o algoritmo 2 tem
tempo de execugdo O(log n).

A notacao Big O estabelece o tempo de execucao para a pior
hipotese

Suponha que vocé utiliza uma pesquisa simples para procurar o nome de
uma pessoa em uma agenda telefonica. Vocé sabe que a pesquisa simples
tem tempo de execugdo O(n), o que significa que na pior das hipoteses tera
verificado cada nome da agenda telefonica. Nesse caso, vocé esta
procurando uma pessoa chamada Adit. Essa pessoa é a primeira de sua lista.
Logo, ndo teve de passar por todos os nomes - vocé a encontrou na primeira

tentativa. Esse algoritmo levou o tempo de execugiao O(n)? Ou levou O(1)
porque encontrou o que queria na primeira tentativa?

A pesquisa simples ainda assim tem tempo de execugdo O(n). Nesse caso,
vocé encontrou o que queria instantaneamente. Essa é a melhor das
hipéteses. A notagao Big O leva em conta a pior das hipdteses. Entao pode-se
dizer que, para o pior caso, vocé analisou cada item da lista. Esse ¢ o tempo
O(n). E uma garantia — vocé sabe, com certeza, que a pesquisa simples
nunca terd tempo de execu¢do mais lento do que O(n).

Nota

Além do tempo de execucao para o pior dos casos, é importante analisar o tempo de
execucgao para o “caso médio”. O pior caso e o caso médio serdo discutidos no Capitulo 4.

Alguns exemplos comuns de tempo de execuc¢ao Big O

Aqui temos cinco tempos de execu¢ao Big O que vocé encontrara bastante,
ordenados do mais rapido para o mais lento.

» O(log n), também conhecido como tempo logaritmico. Exemplo: pesquisa
binaria.
« O(n), conhecido como tempo linear. Exemplo: pesquisa simples.

« O(n * log n). Exemplo: um algoritmo rapido de ordena¢ao, como a
ordenacao quicksort (explicada no Capitulo 4).

« O(n?). Exemplo: um algoritmo lento de ordenagio, como a ordenagio por
selecao (explicada no Capitulo 2).

« O(n!). Exemplo: um algoritmo bastante lento, como o do caixeiro-viajante
(explicado a seguir!).

Suponha que vocé esteja desenhando novamente a grade de 16 divisoes e
vocé possa escolher cinco algoritmos diferentes para fazer isso. Se escolher o
primeiro algoritmo, levara um tempo de execugao de O(log n) para
desenhar a grade. Vocé pode fazer dez operagdes por segundo. Com o
tempo de execugdo O(log n), vocé levara quatro operagdes para desenhar
uma grade com 16 divisdes (log 16 é 4). Logo, levara 0,4 segundos para
desenhar a grade. E se tiver que desenhar 1.024 divisdes? Levara 1.024 = 10
operagdes, ou um segundo para desenhar uma grade de 1.024 divisdes. Estes
numeros sdo para o primeiro algoritmo.

O segundo algoritmo ¢ mais lento: ele tem tempo de execug¢do O(n). Levara
16 operagdes para desenhar 16 divisdes e levara 1.024 operagdes para
desenhar 1.024 divisdes. Quanto tempo isso leva em segundos?

Aqui esta quanto tempo levaria para desenhar a grade com os algoritmos
restantes, do mais rapido ao mais lento:

U E

RAPIDO 0 bIvIsHES O logw) 0w _Q@L,%n} ___CEZ} 0w
16 OAsg 1659 Gse 25.6mg 6630w SENTO
256 08y 25,659 3,4 nin 1.8k 3.6%1ares
1924 1,05e9 1, Fnie 1 F e 1,255 5.Ax10%es

Existem outros tempos de execucdo, mas esses sao 0s cinco mais comuns.

Isso é uma simplificagdo. Na realidade, vocé nao pode converter um tempo
de execucao na notagao Big O para um numero de operagdes, mas a
aproximacao é boa o suficiente por enquanto. Voltaremos a falar da notacao
Big O no Capitulo 4, depois de ter aprendido um pouco mais sobre
algoritmos. Por enquanto, os principais pontos sdo os seguintes:

o A rapidez de um algoritmo nao é medida em segundos, mas pelo
crescimento do nimero de operagdes.

« Em vez disso, discutimos sobre o quao rapidamente o tempo de execugio
de um algoritmo aumenta conforme o nimero de elementos aumenta.

« O tempo de execugdo em algoritmos é expresso na notagao Big O.
 O(log 1) é mais rapido do que O(#n), e O(log n) fica ainda mais rapido
conforme a lista aumenta.
EXERCICIOS

Forneca o tempo de execucdo para cada um dos casos a seguir em termos da
notacao Big O.

1.3 Vocé tem um nome e deseja encontrar o numero de telefone para esse
nome em uma agenda telefonica.

1.4 Vocé tem um numero de telefone e deseja encontrar o dono dele em uma

agenda telefonica. (Dica: Deve procurar pela agenda inteira!)
1.5 Vocé quer ler o nimero de cada pessoa da agenda telefonica.

1.6 Vocé quer ler os numeros apenas dos nomes que comegam com A. (Isso
¢ complicado! Esse algoritmo envolve conceitos que sdo abordados mais
profundamente no Capitulo 4. Leia a resposta — vocé ficara surpreso!)

O caixeiro-viajante

Vocé pode ter lido a ultima se¢do e pensado: “De maneira alguma vou
executar um algoritmo que tem tempo de execugdao O(n!)” Bem, deixe-me
tentar provar o contrario! Aqui estd um exemplo de um algoritmo com um
tempo de execu¢do muito ruim. Ele é um problema famoso da ciéncia da
computagio, pois seu crescimento ¢ apavorante e algumas pessoas muito
inteligentes acreditam que ele possa ser melhorado. Esse algoritmo ¢
chamado de “o problema do caixeiro-viajante”.

Vocé tem um caixeiro-viajante.

O caixeiro precisa ir a cinco cidades.

O caixeiro, o qual chamarei de Opus, quer passar por todas as cidades
percorrendo uma distancia minima. Podemos enxergar o problema da
seguinte forma: analisar cada ordem possivel de cidades para visitar.

129 143 133

MmILHAS MILHAS MILHAS

Ele soma a disténcia total e escolhe o caminho de menor distancia. Existem
120 permutagdes para cinco cidades, logo, precisa-se de 120 operagdes para
resolver o problema de cinco cidades. Para seis cidades, precisa-se de 720
operagdes (ou 720 permutagdes). Para sete cidades sdo necessarias 5.050
operagoes!

¢IDADES | OPERAGOES
e 170
o SpA 8
5 | ap32s

,".".‘"_'| i S L
IS (28%6 7436 3p80

2652528518 12/41 0F 843 6303480000000

O ndmero de operacoes aumenta drasticamente.

De maneira geral, para # itens, é necessario n! (fatorial de n) operacdes para
chegar a um resultado. Entao, este é o tempo de execugdo O(n!) ou o tempo
fatorial. Esse algoritmo consome muitas operagdes, exceto para casos
envolvendo numeros pequenos. No entanto, uma vez que lidamos com mais
de 100 cidades, é impossivel calcular a resposta em fung¢ao do tempo - o sol
entrara em colapso antes.

Esse ¢ um algoritmo terrivel! Opus deveria usar outro, ndo? Mas ele ndo
pode. Esse é um problema sem solugdo. Nao existe um algoritmo mais
rapido para esse problema, e as pessoas mais inteligentes acreditam ser
impossivel melhora-lo. O melhor que se pode fazer é chegar a uma solugao
aproximada. Veja o Capitulo 10 para saber mais sobre isso.

Uma observagéo final: se vocé é um leitor avangado, leia sobre arvores
binarias de busca. No capitulo seguinte, ha uma breve descri¢ao do assunto.

Recapitulando
e A pesquisa bindria é muito mais rapida do que a pesquisa simples.

 O(log n) é mais rapido do que O(n), e O(log n) fica ainda mais rapido
conforme os elementos da lista aumentam.

o A rapidez de um algoritmo ndo é medida em segundos.

o O tempo de execugdo de um algoritmo ¢ medido por meio de seu
crescimento.

o O tempo de execugdo dos algoritmos é expresso na notagao Big O.

2

Ordenacao por selecao

Neste capitulo

- Vocé conhecera arrays e listas encadeadas — dois tipos de estrutura
basica. Eles estao por todo lugar. Vocé ja teve acesso aos arrays no
capitulo 1 e continuara se utilizando deles por praticamente todos
os capitulos. Arrays sao fundamentais, entao preste atencao! Porém
algumas vezes é melhor usar a lista encadeada em vez do array. Este

capitulo explana os prés e os contras de ambas as estruturas para
que possa decidir qual é a ideal para o seu algoritmo.

- Vocé aprendera a fazer o seu primeiro algoritmo de ordenacao.
Muitos algoritmos sé funcionam se os dados estiverem ordenados.
Lembra-se da pesquisa binaria? Vocé s6 pode executa-la se os
elementos de sua lista estiverem ordenados. Este capitulo Ihe
apresentara a ordenacao por selecao. A maioria das linguagens de
programacao contém nativamente os algoritmos de selecao, entao
raramente tera de escrever a sua propria versao a partir do zero. No
entanto a ordenacao por selecao é um trampolim para o quicksort,
que abordarei no préximo capitulo. O quicksort é um algoritmo
importante e sera compreendido mais facilmente se vocé ja
conhecer algum tipo de algoritmo de ordenacao.

O que vocé precisa saber

Para entender a andlise de desempenho deste capitulo, vocé precisa conhecer a notagdo Big O
e logaritmos. Se ndo conhece, sugiro que leia o Capitulo 1. A notagdo Big O ¢ utilizada em
todo este livro.

Como funciona a memoria

Imagine que vocé vai a um show e precisa guardar as suas coisas na
chapelaria. Algumas gavetas estao disponiveis.

Cada gaveta pode guardar um elemento. Vocé deseja guardar duas coisas,
entdo pede duas gavetas.

PODE (JSAR ESTAS DUAS
DUAS GAVETAS, GAVETAS, MONSIEUR
POR FAVOR!

Vocé guardou as suas duas coisas aqui.

GUARDA—CHUVA COELHO

\

Vocé estd pronto para o show! E mais ou menos assim que a memdria do
seu computador funciona. O computador se parece com um grande
conjunto de gavetas, e cada gaveta tem seu endereco.

ENDEREGO: Fefffeeb

g

o s " r L & L]

T T

fe@ffeeb é o endereco de um slot na memoria.

Cada vez que quer armazenar um item na memdria, vocé pede ao
computador um pouco de espaco e ele te da um endereco no qual vocé pode
armazenar o seu item. Se quiser armazenar multiplos itens, existem duas
maneiras para fazer isso: arrays e listas. Falarei sobre arrays e listas depois,
bem como sobre os prds e contras de cada um. Nao existe apenas uma
maneira correta para armazenar itens em cada um dos casos, entdo é
importante saber as diferencas.

Arrays e listas encadeadas

-

Algumas vezes, vocé precisa armazenar uma lista de elementos na memoria.
Suponha que vocé esteja escrevendo um aplicativo para gerenciar os seus
afazeres. E necessario armazenar os seus afazeres como uma lista na
memoria.

Vocé deve usar um array ou uma lista encadeada? Vamos armazenar os
afazeres primeiro em um array, pois assim a compreensao fica mais facil.
Usar um array significa que todas as suas tarefas estdo armazenadas
contiguamente (uma ao lado da outra) na memoria.

sUA LISTA MEMORIA EM USO

DE AFAZERES POR OUTRA PESSOA
¥ b
- - y’
ik ete | 472
MEMORTA
LIVRE = (

Agora, suponha que vocé queira adicionar mais uma tarefa. No entanto a
préxima gaveta esta ocupada por coisas de outra pessoal!

NAO E PossTVEL ADICIONAR
Um AFAZER AQUT POTS ESTE

ESPACO TA ESTA OCUPADO
~

CAFE DA| TOGAR (<A |77
MANHA | BOCHA //4

E como se vocé estivesse indo ao cinema com os seus amigos e encontrasse
um lugar para sentar, mas outro amigo se juntasse a vocés e ndo houvesse
lugar para ele. Vocés todos precisariam se mover e encontrar um lugar onde
todos coubessem. Neste caso, vocé precisaria solicitar ao computador uma
area de memoria em que coubessem todas as suas tarefas. Entao vocé as
moveria para la.

Se outro amigo aparecesse, vocés ficariam sem lugar novamente - e todos
precisariam se mover uma segunda vez! Que incomodo. Da mesma forma,
adicionar novos itens a um array sera muito lento. Uma maneira facil de
resolver isso é “reservando lugares”: mesmo que vocé tenha trés itens na sua
lista de tarefas, vocé pode solicitar ao computador dez espagos, sé por via
das duvidas. Entao, vocé pode adicionar dez itens a sua lista sem precisar
mover nada. Isto é uma boa maneira de contornar o problema, mas vocé

precisa ficar atento as desvantagens:

« Vocé pode ndo precisar dos espagos extras que reservou; entdo a memoria
sera desperdigada. Vocé ndo estd utilizando a memoria, mas ninguém
mais pode usa-la também.

o Vocé pode precisar adicionar mais de dez itens a sua lista de tarefas, entdo
vocé tera de mover seus itens de qualquer maneira.

Embora seja uma boa forma de contornar o problema, ndo é uma solugédo
perfeita. Listas encadeadas resolvem este problema de adicdo de itens.
Listas encadeadas

Com as listas encadeadas, seus itens podem estar em qualquer lugar da
memoria.

MEMORTA UTILIZADA |
POR OUTRA PESSOA

MEMORIA

e Tz : /
7| s

N
N

i@t

Cada item armazena o endereco do proximo item da lista. Um monte de
enderegos aleatérios de memoria estio ligados.

CAFE DAl ?7//’//
>N

fo1]
%///t/% BocHA

-

[0 12| [13]
700 CHA

Enderecos de memodria ligados.

l

NN

E como uma caca ao tesouro. Vocé vai ao primeiro endereco e ele diz “o
proximo item pode ser encontrado no enderego 123”. Entao vai ao endereco
123 e ele diz “O proximo item pode ser encontrado no endereco 847, e
assim por diante. Adicionar um item a uma lista encadeada ¢ facil: vocé o

coloca em qualquer lugar da memoria e armazena o endereco do item
anterior.

Com as listas encadeadas vocé nunca precisa mover os seus itens; também
evita outro problema. Digamos que vocé va a um cinema famoso com os
seus amigos. Vocés seis estdo tentando procurar um lugar para sentar, mas o
cinema esta cheio. Nao ha seis lugares juntos. Bem, algumas vezes isso
acontece com arrays. Imagine que esta tentando encontrar 10.000 slots para
um array. Sua memoria tem 10.000 slots, mas eles nao estao juntos. Voce
ndo consegue arrumar um lugar para o seu array! Usar uma lista encadeada
seria como dizer “vamos nos dividir e assistir ao filme”. Se existir espaco na
memoria, vocé terd espaco para a sua lista encadeada.

Se as listas encadeadas sdo muito melhores para insergdes, para que servem
0s arrays?

Arrays

GATO AY e

Os websites que apresentam listas “top 10” usam uma tatica trapaceira para
conseguir mais visualizagdes. Em vez de mostrarem a lista em uma tnica
pagina, eles colocam um item em cada pagina e fazem vocé clicar em
“proximo” para ler o item seguinte. Por exemplo, “Os 10 melhores viloes da
TV” ndo estardo listados em uma unica pagina, em vez disso, vocé comegara
pelo #10 (Newman) e seguira clicando em “proximo” até chegar em #1
(Gustavo Fring). Esta técnica fornece aos sites dez paginas inteiras para
incluir anuincios, mas fica chato ficar clicando em “préximo” nove vezes até
chegar ao nimero 1. Seria muito melhor se a lista estivesse em uma unica
pagina e vocé pudesse clicar no nome de cada vilao para saber mais.

Listas encadeadas tém um problema similar. Suponha que vocé queira ler o
ultimo item de uma lista encadeada. Vocé nao pode fazer isso porque nao
sabe o endereco dele. Em vez disso, precisa ir ao item #1 para pegar o
endereco do item #2. Entdo, é necessario ir ao item #2 para encontrar o
endereco do item #3, e assim por diante, até conseguir o endereco do ultimo

item. Listas encadeadas sao o6timas se vocé quiser ler todos os itens, um de
cada vez: vocé pode ler um item, seguir para o endere¢o do proximo item e
fazer isso até o fim da lista. Mas se vocé quiser pular de um item para outro,
as listas encadeadas sdo terriveis.

Com arrays ¢ diferente. Vocé sabe o endereco de cada item. Por exemplo,
suponha que seu array tenha cinco itens e que vocé saiba que o primeiro esta
no endereco 00. Qual é o endereco do item #5?

'ARRAY DE CINCO ELEMENTOS

e ey
\ l \ :\—\u QUINTO

a0 ol 02 03 OA ELEMENTO

A matematica lhe da a resposta: estd no enderego 04. Arrays sdo 6timos se
vocé deseja ler elementos aleatorios, pois pode encontrar qualquer elemento
instantaneamente em um array. Na lista encadeada, os elementos ndo estdo
préximos uns dos outros, entao vocé ndo pode calcular instantaneamente a
posi¢do de um elemento na memoria — precisa ir ao primeiro elemento para
encontrar o endereco do segundo, entdo ir ao segundo elemento para
encontrar o endereco do terceiro e seguir fazendo isso até chegar ao
elemento que deseja.

Terminologia

Os elementos em um array sao numerados. Essa numera¢ao comega no 0,
ndo no 1. Neste array, por exemplo, o nimero 20 estd na posigao 1.

[10]20130]40]
1 2 3

O numero 10 esta na posi¢ao 0. Isso geralmente confunde novos
programadores. Comegcar no 0 simplifica todos os tipos de array na
programagao, logo, os programadores nao podem fugir disso. Quase todas
as linguagens de programacao comegarao os arrays numerando o primeiro
elemento como 0. Logo vocé se acostuma!

A posicao de um elemento é chamada de indice. Portanto, em vez de dizer “o

numero 20 estd na posi¢do 17, a terminologia correta seria dizer “o numero
20 esta no indice 1”. Usarei indice para falar de posi¢do neste livro.

Aqui esta o tempo de execugdo para operagdes comuns de arrays e listas.

ARRAYS | LISTAS
O

Lettura | O0G)
Gt

o(N) = TEMPO DE EXECUGAO LINEAR
0(1) = TEMPO DE EXECUGAD CONSTANTE

Pergunta: Por que é necessario tempo de execucao O(n) para inserir um
elemento em um array? Suponha que vocé queira inserir um elemento no
comego de um array. Como faria isso? Quanto tempo levaria? Encontre as
respostas no final desta secdo!

EXERCICIOS

2.1 Suponha que vocé esteja criando um aplicativo para acompanhar as suas
finangas.

1. COMPRAS
2. CINEMA

3. MENSALIDADE
DO SFBC

Todos os dias vocé anotard tudo o que gastou e onde gastou. No final do
més, vocé deverd revisar os seus gastos e resumir o quanto gastou. Logo,
vocé terda um monte de inser¢des e poucas leituras. Vocé devera usar um
array ou uma lista para implementar este aplicativo?

Inserindo algo no meio da lista

Imagine que vocé queira que a sua lista de tarefas se pare¢a mais com um
calendério. Antes, vocé adicionava os itens ao final da lista. Agora, quer

adicionar suas tarefas na ordem em que elas devem ser realizadas.

[CAFE DA MANMA
] JO0GAR BOCHA
O peper cph
g C:DMPBAR CHA~ |

Ceim—y)

Lista desordenada.

O que seria melhor se vocé quisesse inserir elementos no meio de uma lista:
arrays ou listas encadeadas? Usando listas encadeadas, basta mudar o
endereco para o qual o elemento anterior esta apontando.

CAFE DA |07 7////
E , e 7
U

o

y/ / JOGAR =

|?/ ri’; % CH‘EE BOCHA / EEEER -
l%f/ﬁé;//{/ﬁ/—? ﬁ—f rﬁ/ 1 _E_j [23 /2{:

Ja para arrays, vocé deve mover todos os itens que estdo abaixo do endere¢o
de insercao.

r%r%
20| [l

B

Jo0

N
\\\\ 'ﬂ%

2] [13]

[y
B
RS
T
-

3
|

n

N

.

N

>
PRECISAMOS ADICIONAR

E5TA TAREFA AQUI

@*\‘?&W\

o ”
ENTAO, PRECISAMOS COLOCAR

 ESTA TAREFA PARA BATXO
BEBER
CHA

CAFE DA| TOGAR

MANHA |BOCHA

Se nado houver espaco, pode ser necessario mover tudo para um novo local!
Por isso, listas encadeadas sdao melhores caso vocé queira inserir um
elemento no meio de uma lista.

Delec¢bes

E se vocé quiser deletar um elemento? Novamente, é mais facil fazer isso
usando listas encadeadas, pois é necessario mudar apenas o enderego para o
qual o elemento anterior estd apontando. Com arrays, tudo precisa ser
movido quando um elemento ¢é eliminado.

Ao contrario do que ocorre com as inser¢oes, a eliminac¢io de elementos
sempre funcionara. A inser¢do podera falhar quando nao houver espaco
suficiente na memoria.

Aqui estdo os tempos de execu¢ao para as operagdes mais comuns em arrays
e listas encadeadas.

ARRAYS| LI5STAS
LEITURA QM | Ow»
Insereio | O | Ow
ELImIngcho| O | O

Vale a pena mencionar que insercoes e eliminacdes terdo tempo de execucdo
O(1) somente se vocé puder acessar instantaneamente o elemento a ser

deletado. E uma pratica comum acompanhar o primeiro e o tltimo item de
uma lista encadeada para que o tempo de execugdo para deleta-los seja O(1).

O que é mais usado: arrays ou listas? Obviamente, isso depende do caso em
que se aplicam. Entretanto os arrays sdo mais comuns porque permitem
acesso aleatorio. Existem dois tipos de acesso: o aleatério e o sequencial. O
sequencial significa ler os elementos, um por um, comegando pelo primeiro.
Listas encadeadas s6 podem lidar com acesso sequencial. Se vocé quiser ler o
décimo elemento de uma lista encadeada, primeiro precisara ler os nove
elementos anteriores para chegar ao endereco do décimo elemento. O
aleatorio permite que vocé pule direto para o décimo elemento. Muitos
casos requerem o acesso aleatdrio, o que faz os arrays serem mais utilizados.
Arrays e listas sdo usados para implementar outras estruturas de dados (isso
serd explicado mais adiante).

EXERCICIOS

2.2 Suponha que vocé esteja criando um aplicativo para anotar os pedidos
dos clientes em um restaurante. Seu aplicativo precisa de uma lista de
pedidos. Os garcons adicionam os pedidos a essa lista e os chefes retiram
os pedidos da lista. Funciona como uma fila. Os garcons colocam os
pedidos no final da fila e os chefes retiram os pedidos do comeco dela
para cozinha-los.

chrgons adIcTonan ~— HL9TA DE PEDIDOS ~

O CHEF RETIRA
PEDIDOS MO PEDIDOS Do Infclo
FI~AL DA FILA b4 FILA

Vocé usaria um array ou uma lista encadeada para implementar essa lista?
(Dica: listas encadeadas sdo boas para inser¢des/eliminagdes e arrays sao
bons para acesso aleatorio. O que fazer neste caso?)

2.3 Vamos analisar um experimento. Imagine que o Facebook guarda uma

lista de usudrios. Quando alguém tenta acessar o Facebook, uma busca ¢é
feita pelo nome de usudrio. Se o nome da pessoa esta na lista, ela pode
continuar o acesso. As pessoas acessam o Facebook com muita
frequéncia, entdo existem muitas buscas nessa lista. Presuma que o
Facebook usa a pesquisa bindria para procurar um nome na lista. A
pesquisa bindria requer acesso aleatdrio — vocé precisa ser capaz de
acessar o meio da lista de nomes instantaneamente. Sabendo disso, vocé
implementaria essa lista como um array ou uma lista encadeada?

2.4 As pessoas se inscrevem no Facebook com muita frequéncia também.
Suponha que vocé decida usar um array para armazenar a lista de
usudrios. Quais as desvantagens de um array em relagdo as inser¢does? Em
particular, imagine que vocé estd usando a pesquisa bindria para buscar
os logins. O que acontece quando vocé adiciona novos usudrios em um
array?

2.5 Na verdade, o Facebook ndo usa nem arrays nem listas encadeadas para
armazenar informacoes. Vamos considerar uma estrutura de dados
hibrida: um array de listas encadeadas. Vocé tem um array com 26 slots.
Cada slot aponta para uma lista encadeada. Por exemplo, o primeiro slot
do array aponta para uma lista encadeada que contém os usuarios que
comegam com a letra A. O segundo slot aponta para a lista encadeada
que contém os usudrios que comegam com a letra B, e assim por diante.

! T UM4 LISTA ENCADEADA cOM
[1] h n i L L N
{ ‘ :] DA 3——\\5 TODOS 05 NOMES DE USUARIC
[LG el i QUE InIcIam LETRA "an

- 'leEu - “BET}-[” ”ERENbﬁ” % MOMES DE UMRID‘ Qe
INICIAM <OM A LETRA "BY

e pr “cooY " 1 "Car"
_ UM ARRAY

Suponha que o Adit B se inscreva no Facebook e vocé queira adiciona-lo a
lista. Vocé vai ao slot 1 do array, a seguir para a lista encadeada do slot 1, e
adiciona Adit B no final. Agora, suponha que vocé queira procurar o
Zakhir H. Vocé vai ao slot 26, que aponta para a lista encadeada de todos

os nomes comecados em Z. Entdo, procura pela lista até encontrar o
Zakhir H.

Compare esta estrutura hibrida com arrays e listas encadeadas. E mais lento
ou mais rapido fazer inser¢des e elimina¢des nesse caso? Vocé ndo precisa
responder dando o tempo de execucao Big(O), apenas diga se a nova
estrutura de dados é mais rapida ou mais lenta do que os arrays e as listas
encadeadas.

Ordenacao por selecao

Vamos juntar tudo aprendido até aqui para vocé conhecer o seu segundo
algoritmo: a ordenagdo por selecdo. Para seguir nesta secao, vocé precisa ter
compreendido arrays e listas, bem com a notagao Big O.

Suponha que vocé tenha um monte de musicas no seu computador. Para
cada artista, vocé tem um contador de plays.

5 S CONTADOR .
b DE PLAYS

RADIOHEAD 156
s, AT R
Kisvope kuMAR | 141
THE BLACK KEYS 35
MEUTRAL MILK. HOTEL 94-__
BECK 22
THE STROKES 61
WiLco (111

Vocé quer ordenar uma lista de artistas, do artista mais tocado para o menos
tocado, para que possa categorizar os seus artistas favoritos. Como pode
fazer isso? Uma maneira seria pegar o artista mais tocado da lista de musicas
e adiciona-lo a uma nova lista.

CONTADOR CONTADOR
3o~ DE PLAYS Ssore> £ [ivlhn
RADIOHEAD | 156 RADIOHEAD | 156

" KISHORE KUMAR | 141 "

THE BLACK KEYS 35 é o
NEUTRAL MILK HOTEL 94

BEC K 22
THE STRoKES 61
WILCO | 111
1. RADIOHEAD E © 2. ADICIONE-O EM
ARTISTA MAIS TOCADO... UMA NOVA LISTA

Faca isso de novo para encontrar o proximo artista mais tocado.

3o D ek TSoRTED® o PR
RADIOHEAD 156
_ KISHORE KUMAR 141 KisHoke kompR | 141
THE BLACK KEeYs i
NEUTRAL MILK HoteL | 92 -7 =
- BECK | 33
© THE STROKkES | &1
WILCO 111
1. KISHORE KUMAR € O PROXIMO 2. PORTANTO, ELE € O PROXIMO
ARTISTA MATS TOCADO ARTISTA ADICIONADO A NOVA LISTA

Continue fazendo isso e entao vocé terminard com uma lista ordenada.

“§o= |wewan

RADIOHE AD 156

Kisuore rumer | 141

WiLco —1 11

NEUTRAL MILKK HOTEL | 94

BECK &3
THE STRoOKES 61

——— ———————

THE BLACK KEYS 35

Vamos pensar como engenheiros da computagio e avaliar quanto tempo
isso demoraria a ser executado. Lembre-se de que o tempo de execucdao O(n)
significa que vocé precisa passar por todos os elementos da lista uma vez.
Por exemplo, executar uma pesquisa simples na lista de artistas significa
olhar para cada artista uma vez.

RADIOHEAD

I

2 . KISHORE KUMAR

3. THE BLACK. keYs n
4. NEUTRAL MILK HoTEL \TENS
5. BEcCK

&, THE STRoES

F. WILEO

Para encontrar o artista com o maior nimero de plays vocé precisa verificar
cada item da lista. Isso tem tempo de execucao O(n), como vocé acabou de
ver. Entdo vocé tem uma operagdo com tempo de execugdo O(n) e precisa
repetir essa operagao n vezes:

\. RADIOHEAD). KiSHope kumAR

2. ksHofe komAl 2. THE BLACK keVs bR
3. THE BLACKE KEYS 3. NEUTRAL mILk HaTEL

4. MEUTRAL MLk hoTel "') 4 peck T %

5. Beck 5, THE STRoRES

&. THE STRokES 6 WiLco

:1.

¥ QY Q™
LOC) f—\J

" TEMPOS DE EXECUGAO

Isso tem tempo de execucio O(n x 1) ou O(n?).

Algoritmos de ordenagdo sdo muito uteis. Agora vocé pode ordenar:
« nomes em uma agenda telefonica
o datas de viagem

« emails (do mais novo ao mais antigo)

Verificando menos elementos a cada vez

Talvez vocé esteja pensando: conforme passa pelas operagdes, o numero de elementos que
precisa analisar diminui. Eventualmente, vocé acaba tendo de checar apenas um elemento.

Entio como o tempo de execucio permanece sendo O(n%)? Isto é uma boa pergunta, e a
resposta tem a ver com a notagao Big O. Falarei mais sobre isso no capitulo 4, mas aqui vai o

ponto principal.
Vocé estava certo sobre ndo precisar verificar n elementos a cada vez.
Vocé verifica n elementos, entdon — 1, n - 2 ... 2, 1. Na média, vocé verifica uma lista que tem

Y2 x n elementos. O tempo de execugdo é O(n x %2 x n). Mas constantes como % sao
ignoradas na notagao Big O (novamente, leia o Capitulo 4 para ter acesso a discussao

completa), entdo vocé escreve apenas O(n X n) ou O(n?).

A ordenagdo por sele¢do é um algoritmo bom, mas ndo é muito rapido. O
Quicksort é um algoritmo de ordena¢do mais rapido, que tem tempo de
execucdo de apenas O(n log n). Falarei dele no capitulo 4!

EXEMPLO DE CODIGO

Noés ndo lhe mostramos o c6digo para ordenar a lista de musicas, mas a
seguir estdo alguns codigos que farao algo bem similar: ordenar um array do
menor para o maior. Vamos escrever uma fung¢do para encontrar o menor
elemento em um array:

def buscaMenor(arr):
menor = arr[0] @
menor_indice = 0 ®
for 1 in range(1, len(arr)):
if arr[i] < menor:
menor = arr[i]
menor_indice = 1
return menor_indice
@ Armazena o menor valor.

® Armazena o indice do menor valor.

Agora, vocé pode usar esta func¢do para escrever a ordenagao por sele¢do:

def ordenacaoporSelecao(arr): @
novoArr = []
for 1 in range(len(arr)):
menor = buscaMenor(arr) &
novoArr .append(arr.pop(menor))
return novoArr

print ordenacaoporSelecao([5, 3, 6, 2, 10])
O Ordenagdes em um array.
® Encontra o menor elemento do array e adiciona ao novo array.

Recapitulando
« A memoria do seu computador é como um conjunto gigante de gavetas.

 Quando se quer armazenar multiplos elementos, usa-se um array ou uma
lista.

o No array, todos os elementos sdo armazenados um ao lado do outro.

o Na lista, os elementos estdo espalhados e um elemento armazena o
endereco do proximo elemento.

o Arrays permitem leituras rdpidas.
o Listas encadeadas permitem rapidas inser¢des e eliminagdes.

o Todos os elementos de um array devem ser do mesmo tipo (todos ints,
todos doubles, e assim por diante).

3

Recursao

Neste capitulo

- Vocé aprendera recursao. A recursao é uma técnica de programacao

utilizada em muitos algoritmos. E um assunto importante para a
compreensao dos capitulos seguintes.

- Vocé aprendera como separar um problema em caso-base e caso
recursivo. A estratégia dividir para conquistar (Capitulo 4) usa este

conceito simples para resolver problemas complicados.

Estou animado com este capitulo porque trata de recursdo, uma maneira
elegante de solucionar problemas. A recursdo é um dos meus tépicos
favoritos, mas ela é polémica. As pessoas ou a amam ou a odeiam, ou elas a
odeiam até que aprendam a ama-la alguns anos depois. Eu estava nessa
terceira situacao. Para facilitar as coisas, tenho um conselho:

« Este capitulo apresenta varios exemplos de codigos. Execute-os para ver
como eles funcionam.

« Falarei sobre fungdes recursivas. Pelo menos uma vez, analise uma fungao
recursiva com um papel e uma caneta, algo do tipo “vamos ver, passo o
nimero 5 para a func¢io fatorial, e entdo retorno cinco vezes passando
o numero 4 para fatorial, o que me da...”, e assim por diante. Analisar
uma fun¢ao dessa forma lhe ajudara a entender como funcionam as
funcoes recursivas.

Este capitulo inclui muitos pseudocddigos. Pseudocddigos sao uma descri¢ao

de alto nivel de um problema em formato de cédigo. E escrito como um
cddigo, mas utiliza linguagem mais proxima da humana.

Recursao

Suponha que vocé esteja vasculhando o porao de sua avd e encontre uma
misteriosa mala trancada.

A sua avo6 diz que a chave para a mala provavelmente esta em uma caixa.

Y > oy 5
F /’_ n !/I)
LY I , = e
| o R |
7
' s . CONJUNTO
y) X F /| bE cATXAS
2 s
i e 6 Ve /5/t> £ ot
g ‘ ﬁg /u/)}{&
v| - b s)Y, /db #/.;,
I "/:
p—— .-""-...l
— \ ,.-"’"-rl
CAIXA
LPRINCIPHL

Esta caixa contém mais caixas com mais caixas dentro delas. A chave esta
em alguma destas caixas. Qual € o seu algoritmo para procura-la? Pense
nisso antes de continuar a leitura.

Aqui estd uma abordagem.

FAGA UM MONTE
<Om AS CAIXAS QUE
SERAO ANALISADAS

W
ENQUANTO AINDA
HOUVER CAIXAS NO MONTE

7

PEGUE UMA CAIXA
Y4

SE VOCE ENCONTRAR UMA

SE VOCE

OUTRA CAIXA DENTRO ENCONTRAR
- UMA CHAVE
DELA, ADICIONE-A A UM il e f

NOVO MONTE PARA SER
ANALISADA MATS TARDE

VOLTE AD
MONTE DE CAIXAS

1. Monte uma pilha com as caixas que serdo analisadas.
2. Pegue uma caixa e olhe o que tem dentro dela.

3. Se vocé encontrar outra caixa dentro dela, adicione-a a um novo monte
para ser verificada mais tarde.

4, Se vocé encontrar uma chave, terminou!
5. Repita.

Aqui esta outra abordagem.

1. Olhe o que tem dentro da caixa.

2. Se encontrar outra caixa, volte ao passo 1.
3. Se encontrar a chave, terminou!

Qual abordagem lhe parece mais facil? A primeira abordagem utiliza um
loop while (enquanto, em portugués). Enquanto o monte existir, pegue uma
caixa e olhe o que tem dentro dela:

def procure_pela_chave(caixa_principal):
pilha = main_box.crie_uma_pilha_para_busca()
while pilha is not vazia:
caixa = pilha.pegue caixa()
for item in caixa:
if item.e_uma_caixa():
pilha.append(item)
elif item.e_uma_chave():
print "achei a chave!"

A segunda maneira utiliza a recursdo. Recursdo é quando uma fungao
chama a si mesma. Veja o pseudocodigo de como isso funciona.

def procure_pela _chave(caixa):
for item in caixa:
if item.e_uma_caixa():
procure_pela_chave(item) @
elif item.e_uma_chave():
print "achei a chave!"

@ Recursao!

Ambas as abordagens cumprem com a mesma proposta, mas a segunda me
parece mais objetiva. A recursdo é usada para tornar a resposta mais clara.
Nao ha nenhum beneficio quanto ao desempenho ao utilizar a recursao. Na
verdade, os loops algumas vezes sdao melhor para o desempenho de um
programa. Gosto desta frase de Leigh Caldwell, do Stack Overflow: “Os
loops podem melhorar o desempenho do seu programa. A recursao melhora

o desempenho do seu programador. Escolha o que for mais importante para

a sua situacdo.”L

Muitos algoritmos importantes usam a recursao, entdo ¢ fundamental
entender este conceito.

Caso-base e caso recursivo

Devido ao fato de a funcao recursiva chamar a si mesma, é mais facil
escrevé-la erroneamente e acabar em um loop infinito. Por exemplo,
suponha que vocé escreva uma func¢do que imprima uma contagem
regressiva, como esta:

> 3...2...1
Vocé pode escrever isso de maneira recursiva fazendo o seguinte:
def regressiva(i):

print i
regressiva(i-1)

Escreva este codigo e execute-o. Vocé percebera um problema: essa func¢ao
ficara executando para sempre!

Loop infinito.
>3...2...1...0...-1...-2...
(Pressione Ctrl-C para interromper o seu script.)

Quando vocé escreve uma fungao recursiva, deve informar quando a
recursdo deve parar. E por isso que toda fungdo recursiva tem duas partes: o
caso-base e o caso recursivo. O caso recursivo é quando a fun¢do chama a si
mesma. O caso-base é quando a fun¢do ndo chama a si mesma novamente,
de forma que o programa nao se torna um loop infinito.
Vamos adicionar o caso-base a func¢ao de contagem regressiva:
def regressiva(i):
print i
ifi<=1: O
return

else: O
regressiva(i-1)

@ Caso-base.
® Caso recursivo.

Agora, a fungdo funciona como esperado. Ela fica mais ou menos assim:

TMPRIMA 1

cASO CONTRARTO,
EXECUTE A CONTAGEM COM 1-]

t

CA50-BASE CA50 RECURSIVO

5€ i<=],
TERMINOY

A pilha

Esta se¢do aborda a pilha de chamada (call stack). Isto é um conceito
importante em programacao e indispensavel para entender a recursao.

Suponha que vocé esteja fazendo um churrasco para os seus amigos. Vocé
tem uma lista de afazeres em forma de uma pilha de notas adesivas.

Vocé se lembra de que, quando falamos de arrays e listas, também havia
uma lista de afazeres? Podia adicionar itens em qualquer lugar da lista ou
remover itens aleatérios. A pilha de notas adesivas é bem mais simples.
Quando vocé insere um item, ele é colocado no topo da pilha. Quando vocé
1é um item, lé apenas o item do topo da pilha e ele é retirado da lista. Logo,
sua lista de afazeres contém apenas duas agdes: push (inserir) e pop (remover
e ler).

s

—

PUSH PoeP
(ADICIONE UM NOVO (REMOVA O ITEM
ITEM AO TOPO) 0O TOPO € LEIA-0)

Vamos ver como isso funciona na pratica.

Lista de
afazeres

Arranor
C¢NHJL

UTILIZE © POP PARA NESTA LISTA vOcE LE A TAREFA AGORA vAMDS TNSERTR (PUsH)
RETIRAR UMA LISTA DE "ARRANTAR COMIDA", vOCE DEVE ARRANTAR ESTAS TAREFAS NA PILHA

AFAZERES DO TOPO DA PILWA PAES, HAMBURGUERES € ASSAR UM BOLO.

Esta estrutura de dados é chamada de pilha. A pilha é uma estrutura de
dados simples. Vocé a tem usado esse tempo todo sem perceber!

A pilha de chamada

Seu computador usa uma pilha interna denominada pilha de chamada.
Vamos ver isto na pratica. Aqui esta um exemplo simples:
def sauda(nome):
print "Ola, " + nome + "!"
sauda2(nome)
print "preparando para dizer tchau..."
tchau()

Esta fun¢do te cumprimenta e chama outras duas fungoes:

def sauda2(nome):
print "Como vai " + nome + "?"

def tchau():
print "ok, tchau!"

Vamos analisar o que acontece quando vocé chama uma funcao.

Nota

print é uma funcao em Python, mas, para facilitar as coisas, vamos fingir que nao é. Entre
na brincadeira.

N.R.T.: tecnicamente print ndo é uma funcdo em Python 2, mas uma instrucdo ou
statement.

Suponha que vocé chame sauda("maggie"). Primeiro, seu computador
aloca uma caixa de memoria para essa chamada.

Agora, vamos usar a memdria. A variavel nome ¢ setada para “maggie”. Isso
precisa ser salvo.

LJ
gl

Cada vez que vocé faz uma chamada de funcéo, seu computador salva na
memoria os valores para todas as variaveis. Depois disso, imprime ol3,
maggie!. Entdo, chama sauda2("maggie").

ol (AlE I

Novamente, seu computador aloca uma caixa de memoria para essa
chamada de funcao.

Seu computador estd usando uma pilha para estas caixas. A segunda caixa é
adicionada em cima da primeira. Vocé imprime "como vai maggie?".

Entao, retorna da chamada de funcao. Quando isso acontece, a caixa do
topo da pilha é retirada.

s
SHUM

OME:| A

Agora, a caixa do topo da pilha aloca os valores da fung¢do sauda, o que
significa que vocé retornou a fung¢do sauda. Quando vocé chamou a fun¢ao
saudaz, a func¢do sauda ficou parcialmente completa. Esta é a grande ideia
por tras desta se¢do: quando vocé chama uma fungdo a partir de outra, a
chamada de fungdo fica pausada em um estado parcialmente completo. Todos
os valores das variaveis para aquela funcao ainda estdo armazenados na

memoria. Agora que vocé ja utilizou a fun¢ao sauda2, vocé esta de volta na
fung¢do sauda e pode continuar de onde parou. Primeiro, imprime
"preparando para dizer tchau..."eentdo chama a fun¢do tchau.

Uma caixa para esta funcao é adicionada ao topo da pilha. Quando vocé
imprimir ok, tchau!, retornara da chamada de funcao.

| Ty

Wk
BT}

Agora, vocé estd de volta a fun¢ao sauda. Nao ha nada mais a ser feito, e
vocé pode sair da fun¢do sauda também. Essa pilha usada para guardar as
variaveis de multiplas func¢oes é denominada pilha de chamada.

EXERCICIOS

3.1 Suponha que eu forne¢a uma pilha de chamada como esta:

SAUDA 2 __j
‘ NOME: | mAGGI®
SAUDA
NOME: | magile

Quais informagdes vocé pode retirar baseando-se apenas nesta pilha de
chamada?

Agora, vamos ver esta pilha de chamada sendo executada com uma fungao
recursiva.

A pilha de chamada com recursao

As fung¢oes recursivas também utilizam a pilha de chamada! Vamos analisar
isto na pratica com a func¢ao fat (fatorial). fat(5) é escrita como5!eé
definida da seguinte forma: 5! =5* 4 * 3 * 2 * 1. De forma semelhante,
fat(3) é3*2*1. Aqui estd uma funcio recursiva para calcular a fatorial
de um numero:

def fat(x):
if x ==
return 1
else:
return x * fat(x-1)

Agora, vocé chama a fungdo fat(3). Vamos analisar esta pilha de chamada
linha por linha e ver como ela se altera. Lembre-se, a caixa mais proxima ao

topo lhe diz em qual chamada a funcdo fat se encontra atualmente.

0010 PILHA DE CHAMADA

Far PRIMEIRA EXECUCAO
fatQ) x|s bE £at X E 3.
ifx‘“l: :ﬁfj |
else: AT
UMA CHAMADA car
Z
RECURSIVA! return X % fat (¢ '1) xrl-r
X | 3
ACGORA, ESTA € A_ FaT A CHAMADA DE FUNGAO
SEGUNDA EXECUGAD if}‘-==11 % {24 * MATS AO TOPD E
be £t X E 2. FAT A CHAMADA QUE
NES ESTAMOS ATUALMENTE.
TTT TS S TTTTTTTS ST UL] PERCEBA QUE AMBAS AS
1 < [2 | < CHAMADAS DE FUNGOES
else: CAT POSSUEM UMA VARTAVEL
k= X, MAS O VALOR DA
e X 13 | VARIAVEL X E DIFERENTE
B T FAT EM CADA UMA.
:;l; ®~ vocE NAo conNSEGUE
5 AL ACESSAR ESTA VARIAVEL
CHAMADA DE
FAT € VICE E VERSA.
I x |3
FAT
x| 1
.f‘ x _ 1' FP'-T
! i x |2
FAT
Wz

e .

ESTE € O PRIMEIRO ITEM A
SER RETIRADO DA PILMHA,
3 0 QUE STGNIFICA QUE
Q ESTA € A PRIMEIRA
CHAMADA DA QUAL
M5 RETORNAMODS.

NO554, NGS5 FIZEMOS :
TRES CHAMADAS A

FUNGAO £at, mas returh -
NG5 Ao waviamos

FINALIZADO NENHUMA

CHAMADA ATE AGORA!

=~ RETORNA]

ESTA € A s N %

o e os teturn Xk fal oD 3] ReToRwA 2
DE RETORNA P =
RETORMAR % é 2//] % -

return X % ﬁt(ﬁ‘D <— RETORNA 6
»EZ Fa)

ESTA CHAMADA RETORNOU 2

Repare que cada chamada para a funcdo fat tem seu proprio valor de x.
Vocé nao consegue acessar a mesma fun¢do com outro valor de x.

A pilha tem um papel importante na recursdo. No primeiro exemplo,
mostrei duas abordagens para encontrar a chave. Aqui esta a primeira.

FACA UM MONTE
cOMm A5 CAIXAS QUE
SERAO ANALISADAS

N

EMAUANTO ATNDA
HOUVER CAIXAS NO MONTE

&+ .
PEGUE UMA mikﬂl

4

SE VOCE ENCONTRAR UMA
OUTRA CAIXA DENTRO
DELA, ADICIONE-A A UM
NOVD MONTE PARA SER
ANALISADA MATS TARDE

VOLTE AD
MONTE DE CAIXAS

Desta forma, vocé fez um monte com caixas para analisar, entdo sabe quais
caixas vocé ainda precisa abrir.

A PROXIMA CAIXA
A SER AMNALISADA

O MOMNTE DE CAINAS

Mas na abordagem recursiva nao existem montes.

Se ndo existem montes, como um algoritmo reconhece quais caixas ele deve
procurar? Aqui estd um exemplo.

VOCE ANALISA DENTRO DELA VOCE
A cAIxa A ENCONTRA AS cATXAs B e €

ESTA vAZIA

Neste ponto, a pilha de chamada se parece com isto:

DEVEM SER
\‘ ANALISADAS
catxa D/ —
——

cAIxA B
CADXA B
cana A [Ef,

4

If

O “monte de caixas” é salvo na pilha! Esta ¢ uma pilha com as fungoes de
chamada completadas até a metade, cada uma com a sua lista de caixas,
também completadas até a metade, para ser analisadas. Utilizar a pilha é
conveniente porque vocé nao precisa acompanhar o monte de caixas — a
pilha faz isso para vocé. Usar a pilha é bom, porém, existe um custo: salvar
toda essa informagao pode ocupar muita memdria. Cada uma destas
fungdes de chamada ocupa um pouco de memoria, e quando a sua pilha esta

muito cheia é sinal de que seu computador esté salvando informacgéao para
muitas chamadas de func¢des. Para esta situacao, vocé tem duas opgdes:

« Reescrever seu codigo utilizando loops.

o Utilizar o que chamamos de tail recursion (recursdo de cauda). Isto é um
topico avancado em recursao e esta fora do escopo deste livro. Esta técnica
também nao é suportada por todas as linguagens de programacgao.

EXERCICIO

3.2 Suponha que vocé acidentalmente escreva uma funcao recursiva que
fique executando infinitamente. Como vocé viu, seu computador aloca
memoria na pilha para cada chamada de fungdo. O que acontece com a
pilha quando a funcao recursiva fica executando infinitamente?

Recapitulando

e Recursao é quando uma fun¢ao chama a si mesma.

« Toda fungdo recursiva tem dois casos: o caso-base e o caso recursivo.
« Uma pilha tem duas operagoes: push e pop.
« Todas as chamadas de fun¢do vao para a pilha de chamada.

o A pilha de chamada pode ficar muito grande e ocupar muita memdria.

1 http://stackoverflow.com/a/72694/139117.

4

Quicksort

Neste capitulo

« Vocé ird se deparar, ocasionalmente, com problemas que nao
podem ser resolvidos com algum algoritmo de seu conhecimento.
Porém quando um bom desenvolvedor de algoritmos encontra um
destes problemas, ele nao desiste. Pelo contrario, ele utiliza uma
ampla gama de técnicas para encontrar uma solucao, sendo a

técnica de dividir para conquistar a primeira que vocé aprendera.

- Vocé conhecera também o quicksort, um algoritmo de ordenacao
elegante que é utilizado com frequéncia. Este algoritmo utiliza a
técnica de dividir para conquistar.

No ultimo capitulo vocé aprendeu tudo sobre recursao. Este capitulo focara
na utilizacao destas suas novas habilidades aplicadas na resolucao de
problemas. Para isto, vamos explorar a técnica dividir para conquistar (DC),
uma técnica recursiva muito conhecida para resolucao de problemas.

Este capitulo trata do ponto principal dos algoritmos, pois um algoritmo
que consegue resolver apenas um tipo de problema ndo é muito util. Assim,
a técnica DC oferece uma nova maneira de pensar sobre a resolucao de
problemas, tornando-se mais uma alternativa em sua caixa de ferramentas.
Quando vocé se deparar com um problema novo, ndo tera motivos para
ficar desnorteado. Em vez disso, podera se perguntar “Sera que posso
resolver este problema usando a técnica de dividir para conquistar?”.

Ao final deste capitulo vocé tera aprendido o seu primeiro algoritmo que
utiliza a técnica DC: o quicksort. O algoritmo quicksort é um algoritmo de
ordenagdo muito mais rapido do que o algoritmo de ordenagdo por selecao
(que vocé aprendeu no Capitulo 2), e é também um bom exemplo de
programacao elegante.

Dividir para conquistar

A técnica DC pode levar algum tempo para ser compreendida. Por isso,
veremos trés exemplos. Primeiro, mostrarei um exemplo visual. Depois,
mostrarei um codigo de exemplo simples, mas nao tao elegante. Por fim, nos
aprofundaremos no quicksort, um algoritmo de ordenagao que utiliza DC.

Suponha que vocé seja um fazendeiro que tenha uma area de terra.

1688 METROS

sl

WA
A XA N0 ey
o 207w Jhr » l- PRI LY Y
I“q, 50 ||.|.‘lll'|“!*|‘, .;\. ol J|J
et i‘"l"" '{H.I.. R '1;{"“'|".,,‘;)7p”
¥ (] (I .
i”l { ’J’Iil“tj" tll L 'I” 2t {‘.‘ . ’Jh. Itji-" 64¢
‘”l:':,;.l.l Iy e #y Faund ;':{l‘lrl"ll;h
LTI ' Y [s it
.IJ: :: "ij,‘l-l' LR :1*|':("“|‘ :II,';"'I'I METRDS
] O gy P,
.Jlj\:,; r Y, J\,""I!“ y -I| I'J.".t
! [v g L L LAY |
T EY 1o LI
P Y F g N R T A
g™ L ML .,J Py 1!
-, AL i sy el H“ 1-!. v
R I\-I“HJ\ A i

Vocé quer dividir sua fazenda em porg¢des quadradas iguais, sendo que estas
por¢des devem ter o maior tamanho possivel. Assim, nenhuma destas

alternativas funcionara.

—

PORGDES NAD
SAO QUADRADAS

.

PORGOES 5A0

PEQUENAS DEMATS

—

TODAS AS PORGOES
DEVEM POSSUIR ©
MESMO TAMANHO

Como encontrara o maior tamanho possivel para estes quadrados? Usando a
estratégia DC! Os algoritmos DC sdo recursivos. Assim, para resolver um
problema utilizando DC, vocé deve seguir dois passos:

1. Descubra o caso-base, que deve ser o caso mais simples possivel.

2. Divida ou diminua o seu problema até que ele se torne o caso-base.

Vamos usar DC para encontrar a solucao deste problema. Qual é a maior

largura que vocé pode usar?

Primeiro, descubra o caso-base. Seria mais facil solucionar este problema se
um dos lados fosse multiplo do outro.

S X
A A5,

.'hi: 25“ - igm

Suponha que um dos lados tenha 25 metros (m) e o outro tenha 50. Assim,
o maior quadrado que vocé pode ter mede 25 m x 25 m. Vocé precisa de
dois destes quadrados para dividir a por¢ao de terra.

Agora vocé precisa descobrir o caso recursivo, e é aqui que a estratégia DC
entra em a¢ao. Seguindo a estratégia DC, a cada recursdo vocé deve reduzir
o seu problema. Entdo, como reduzir este problema? Vamos comecar
identificando os maiores quadrados que vocé pode utilizar.

PORGAO DE TERRA

DOTS
QUE AINDA DEVE
QUADRADOS 5ER DIVIDIDA
Y ¥

| n

64 m

—_

e N R T
64'(,5“1 64D m 40P m

Vocé pode posicionar dois quadrados de 640 x 640 na fazenda e ainda
continuard com uma por¢ao de terra para ser dividida. Este é 0 momento
“Aha!”. Vocé ainda tem um segmento da fazenda que deve ser dividido. Por
que ndo aplica este mesmo algoritmo neste segmento?

1 § ¥
IS N
ey ,\‘-1,' 6‘4'&*,

LT
ok e gy Mg

——
433,

NOVA AREA DA FAZENDA
QUE DEVE SER DIVIDIDA

Vocé iniciou com uma porgao de terra medindo 1.680 x 640 que deveria ser
dividida. Porém agora vocé precisa dividir um segmento menor, que mede
640 x 400. Caso encontre o maior quadrado que divide este segmento, ele serd
o maior quadrado que dividird toda a fazenda. Vocé acabou de reduzir um
problema de divisdo de uma fazenda medindo 1.680 x 640 para um
problema de divisdo de uma area medindo 640 x 400!

Algoritmo de Euclides

“Caso vocé encontre o maior quadrado que divide este segmento, ele sera o maior quadrado
que ira dividir toda a fazenda” Se ndo parece 6bvio o motivo de esta afirmagdo ser
verdadeira, ndo se preocupe, ela realmente nao ¢é trivial. Infelizmente, a prova desta afirmagao
¢ um pouco longa para ser incluida neste livro, entao vocé tera de confiar em mim. Caso vocé
queira entender a prova, procure o Algoritmo de Euclides. A Khan Academy deu uma boa
explicacdo, disponivel aqui: https://www.khanacademy.org/computing/computer-

science/cryptography/modarithmetic/a/the-euclidean-algorithm.

- 240
ko

ki

Vamos aplicar o mesmo algoritmo novamente. Comegando com uma
fazenda medindo 640 x 400 m, o maior quadrado que vocé pode ter mede
400 x 400 m.

E isso deixa vocé com um segmento menor do que 400 x 240 m.

——————————————

, “:-.: :: 1‘:‘:::' f‘: '.::}fx: '., 4
Z/////%/ﬁ IR ARACHY } i
) f///ﬁ o

TP Pm

Vocé pode desenhar um quadrado neste segmento que lhe deixa com um
segmento ainda menor, de 240 x 160 m.

246,

/ X :ﬂ&ﬁ-
{//HEEt

Sy e -
2.4 Pn 16Pm 16 B

Entdo, vocé desenha um quadrado neste segmento para ter um segmento
ainda menor.

CA50-BASE!

Ei, vocé acabou de descobrir o caso-base, pois 80 é um multiplo de 160. Se
dividir este segmento em quadrados, ndo haverd segmentos sobrando!

L] i
N | p

= r“ }Sﬁsm I':
N
.--'8¢

L]
™ 3¢“ -
. \'

—

Assim, para a fazenda original, o maior quadrado que vocé pode utilizar é
80 x 80 m.

80m

1 30m

Para recapitular, estes sdo os passos para aplica¢do da estratégia DC:
1. Descubra o caso-base, que deve ser o caso mais simples possivel.
2. Descubra como reduzir o seu problema para que ele se torne o caso-base.

O algoritmo DC nao ¢ um simples algoritmo que vocé aplica em um
problema, mas sim uma maneira de pensar sobre o problema. Vamos ver
mais um exemplo.

EZ s (il Vocé tem um array de nimeros.

Vocé deve somar todos os numeros e retornar o valor total. Isto é simples de
ser feito com um loop:

def soma(lista):

total = 0
for x in lista:
total += x

return total
print soma([1, 2, 3, 4])
Mas como isso poderia ser feito com uma fun¢ao recursiva?

Passo 1: Descubra o caso-base. Qual é o array mais simples que vocé pode
obter? Pense sobre o caso mais simples: se vocé tiver um array com 0 ou
com 1 elemento, sera muito simples calcular a soma.

[] 4 eLEMENTOS = 50MA € &

CASO-BASE [7] 1 ELEMENTOS = 50MA E 3

Logo, esse ¢ o caso-base.

Passo 2: Vocé deve chegar mais perto de um array vazio a cada recursao.
Como pode reduzir o tamanho do seu problema? Esta é uma alternativa:

.5om(z 4@) =12

A soma deste array ¢é igual a isto:

2 +soma ([Els)) - 2 +10 =12

Em ambos os casos o resultado ¢ 12. Porém, na segunda versao, vocé esta

usando um array menor na fun¢iao soma. Ou seja, vocé estd diminuindo o
tamanho do problema!

A sua fun¢do soma poderia funcionar assim:

CASO CONTRARTO,

A SOMA TOTAL SERA O PRIMEIRO

NUMERO DA LISTA + A SOMA DO
RESTANTE DA LISTA

5 A LISTA
ESTIVER VAZIA,
RETORNE ZERO

Aqui esta um exemplo da func¢io na pratica:

REﬂLTﬂM\;FINﬂL

REP:;B::T%E?'* - ‘1 i2 -
sA0 TGUATS e (E@ED E T)
J
2 + 5%;&() 2+1® = 12
J (}
A% mmn(@l) 4+6 =17
4

CAS0-BASE!
soms ([31) €

Lembre-se de que a recursdo tem memoria dos estados anteriores.

NENHUMA DESTAS FUNGDES € LEMBRE-SE QUE A RECURSAO

FINALIZADA ATE QUE VOCE 5ALVA O ESTADO DESTAS FUNGOES
CHEGUE NO CASC BASE! PARCIALMENTE EXECUTADAS | y
s soms ([2[216]) 19
s
\ 2 t
2+50M(E6) JES]_Q =1)

J i
4.}.5%&(@) 4+ 6 =1¢’
J

CASC—BASE! —j

esta € & prmnema 7 SOMA ([€]) £ ¢

CHAMADA DE FUNGAC QUE
REALMENTE € FINALIZADA

Dica
Quando estiver escrevendo uma fungio de recursdo que envolva um array, o

caso-base serd, muitas vezes, um array vazio ou um array com apenas um
elemento. Se estiver com problemas, use este caso como base.

Uma espiada em programacao funcional

“Por que eu faria isto recursivamente quando é mais simples fazer através de um loop?” é o
que vocé pode estar pensando. Bem, estamos dando uma espiada em programacao funcional!
Linguagens de programacao funcional, como Haskell, ndo contém loops, e isso faz com que
vocé tenha de usar fungdes como essa. Se vocé compreende bem o que é recursao, linguagens
funcionais serao simples de entender. Por exemplo, vocé escreveria uma fun¢do somatdria em
Haskell assim:

soma [] =0 @
soma (x:xs) = x + (soma xs) @

@ Caso-base.

@ Caso recursivo.

Perceba que parece que vocé tem duas defini¢oes para a fun¢do. A primeira defini¢ao é
executada quando vocé alcanca o caso-base, e a segunda é executada no caso recursivo. Vocé
também pode escrever essa funcdo em Haskell usando um operador condicional if (se, em
portugués):

soma arr = if arr == []
then 0
else (head arr) + (soma (tail arr))
Porém a primeira definicio é mais simples de ler. Como Haskell se baseia fortemente em
recursdo, essa linguagem inclui varios detalhes como este para tornar a recursio mais
simples. Se vocé gosta de recursdao ou caso vocé esteja interessado em aprender uma nova
linguagem de programagédo, dé uma olhada em Haskell.

EXERCICIOS

4.1 Escreva o c6digo para a fungdo soma, vista anteriormente.
4.2 Escreva uma funcio recursiva que conte o numero de itens em uma lista.
4.3 Encontre o valor mais alto em uma lista.

4.4 Vocé se lembra da pesquisa binaria do Capitulo 1? Ela também é um
algoritmo do tipo dividir para conquistar. Vocé consegue determinar o
caso-base e o caso recursivo para a pesquisa bindria?

Quicksort

O quicksort é um algoritmo de ordenagao. Este algoritmo é muito mais
rapido do que a ordenagdo por selecdo e é muito utilizado na pratica. Por
exemplo, a biblioteca-padrao da linguagem C tem uma fun¢ao chamada
gsort, que ¢ uma implementa¢do do quicksort. O algoritmo quicksort
também utiliza a estratégia DC.

Vamos usar o quicksort para ordenar um array. Qual é o array mais simples

que um algoritmo de ordena¢ao pode ordenar (lembre-se da minha dica na
secdo anterior)? Bem, alguns arrays ndo precisam nem ser ordenados.

NAO WA [] <— ARRAY VAZIO
NECESSIDADE
DE ORDENAR

ARRAYS) @ <~ ARRAY COM UM ELEMENTO
COMO ESTES

Arrays vazios ou arrays com apenas um elemento serdo o caso-base. Vocé
pode apenas retornar esses arrays como eles estdo, visto que ndo ha nada
para ordenar:

def quicksort(array):
if len(array) < 2:
return array

Vamos dar uma olhada em arrays maiores. Um array com dois elementos
também é muito simples de ordenar.

CONFIRA SE O PRIMEIRC

< ELEMENTO € MENOR DO QUE
1 0 SEGUNDO. CASO NAO SETA,

ELES 540 TROCADOS DE LUGAR

E um array com trés elementos?

3315 |19

Lembre-se, vocé esta usando DC. Sendo assim, quer quebrar este array até
que vocé chegue ao caso-base. Portanto o funcionamento do quicksort segue
esta logica: primeiro, escolha um elemento do array. Esse elemento sera
chamado de pivé.

all

Falaremos sobre como escolher um bom pivo mais tarde. Neste momento,
vamos utilizar o primeiro item do array como pivo.

Assim, encontre os elementos que sdo menores do que o pivo e também os
elementos que sdo maiores.

NUMEROS MAIORES DO

NUMEROS MENORES o o™y (ARRAY VAZI0)

DO QUE 33 J
1s118) G [
4‘

PIVO

Isso é chamado de particionamento. Desse modo, vocé tem:

« Um subarray contendo todos os numeros menores do que o pivo
« O pivd
« Um subarray contendo todos os niimeros maiores do que o pivo

Os dois subarrays nao estao ordenados, apenas particionados. Porém, se eles
estivessem ordenados, a ordenacao do array contendo todos os elementos

seria simples.
1811s) S []

Caso os subarrays estejam ordenados, podera combina-los desta forma:
array esquerdo + pivd + array direito. Consequentemente, terd um
array ordenado. Neste caso, temos [10, 15] + [33] + [] = [10, 15,
33], que é um array ordenado.

Como vocé pode ordenar os subarrays? Bem, o caso-base do quicksort
consegue ordenar arrays de dois elementos (o subarray esquerdo) e também
arrays vazios (o subarray direito). Assim, se utilizar o quicksort em ambos
os subarrays e entdo combinar os resultados, terd um array ordenado!

quicksort([15, 10]) + [33] + quicksort([])
> [10, 15, 33] ©

©® Um array ordenado

Isto funcionara com qualquer pivo. Suponha que vocé tenha escolhido o

numero 15 como pivo.

Ambos os subarrays contém apenas um elemento, e vocé ja sabe como
ordenar este tipo de array. Logo, ja sabe como ordenar um array de trés
elementos. Estes sdo os passos:

1. Escolha um pivo.

2. Particione o array em dois subarrays, separando-os entre elementos
menores do que o pivo e elementos maiores do que o pivo.

3. Execute o quicksort recursivamente em ambos os subarrays.

E quanto a um array de quatro elementos?

Bz 1$]15[7]

Suponha que, desta vez, vocé escolheu o numero 33 como pivo.

B[&]

O array da esquerda contém trés elementos, e vocé ja sabe como ordenar
arrays de trés elementos: executando o quicksort recursivamente.

5[] & []
[7]<> (5]

Agora pode ordenar arrays de quatro elementos. Sabendo ordenar arrays

com quatro elementos, vocé consegue ordenar arrays com cinco elementos.
Como? Suponha que tenha um array com cinco elementos.

51512 [1]a]

Estas sao todas as maneiras pelas quais vocé pode particionar este array,
dependendo do pivo que escolher.

|2
B2y & [E]
BRAAROAN

Perceba que todos estes subarrays tém entre 0 a 4 elementos, e vocé ja sabe
como ordenar arrays de 0 a 4 elementos usando o quicksort! Logo, ndo
importa o pivd que vocé escolher, pois vocé podera executar o quicksort
recursivamente em ambos os subarrays.

Por exemplo, imagine que vocé escolheu o numero 3 como pivo. Vocé
executa o quicksort nos subarrays.

| cbsm:t <E1D @ CI/SDY:t(rs 4) |
¥

[1121 B> [aT5]
|

[1l2[3]4]s]

Os subarrays sdo ordenados e entdo vocé os combina, obtendo um array
ordenado. Isto funcionara mesmo que escolha o niimero 5 como pivo.

.c}aov't@ 211 aﬂ) <5> c;f-m;t([:‘)
\%

[12(3]4 <i>[J
[a12]3]4]5]

Isso funcionard, na verdade, com qualquer elemento como pivo. Agora vocé
ja consegue ordenar um array de cinco elementos. Usando a mesma légica,
conseguird ordenar um array de seis elementos ou mais.

Provas por inducao

Vocé acabou de observar alguns exemplos de provas por inducdo. Estas provas representam
uma maneira de mostrar que o seu algoritmo funciona. Cada prova por indugdo segue dois
passos: o caso-base e o caso indutivo. Isso ndo soa familiar? Imagine que eu queira provar que
sou capaz de subir até o topo de uma escada. No caso indutivo, se minhas pernas estiverem
em um degrau, poderei colocd-las no proximo degrau. Assim, se estiver no degrau 2, poderei
subir para o degrau 3. Este ¢ o caso indutivo. Ja para o caso-base, falarei que minhas pernas
estdo no degrau 1 e que, portanto, sou capaz de subir a escada inteira, um degrau de cada vez.

Vocé usa uma ldégica semelhante para o quicksort. No caso-base, mostrei que o algoritmo
funciona para o caso-base: arrays de tamanho 0 e 1. No caso indutivo, mostrei que, da mesma
forma que o quicksort funciona para um array de tamanho 1, ele também funcionard para
arrays de tamanho 2. Assim como ele funciona para arrays de dois elementos, também
funcionara para arrays de trés elementos, e assim por diante. Dessa forma, podemos dizer
que o quicksort funciona para todos os tamanhos de array. Ndo me aprofundarei em provas
por indugdo, mas elas sdo divertidas e andam lado a lado com a estratégia DC.

Aqui esta o cddigo para o quicksort:
def quicksort(array):
if len(array) < 2:
return array ©
else:
pivo = array[0] ©
menores = [1 for 1 in array[1:] if 1 <= pivo] ©
maiores = [1 for 1 in array[1:] if 1 > pivo] ®
return quicksort(menores) + [pivo] + quicksort(maiores)
print quicksort([10, 5, 2, 3])
@ Base: arrays com 0 ou 1 elemento ja estdao “ordenados”.
® Caso recursivo.
® Subarray de todos os elementos menores do que o pivo.
® Subarray de todos os elementos maiores do que o pivé.

Notacao Big O revisada

O algoritmo quicksort ¢ nico, pois sua velocidade depende do pivod
escolhido. Antes de falarmos sobre quicksort, vamos analisar novamente os
tempos de execug¢do Big O mais comuns.

| ALGORTTMO PESQUISA PESQUISA ORDENAGAO © CAIXEIRO
OE EXEMPLO BINARTA SIMPLES QUICKSORT Log seLecho VIATANTE
TAMANHO . ' O A L ' '
ARRAY EE';_E_Q_._____ B , Olnlogw) OGO . O
16 B,3seq Tseg 3,35¢q 1Pseq 4.24ias
19¢ psey - G Shseq lomin 29x18Mks
19 B9 1seq 19pseq 196seq 2%, hoves 1.2 10508

Estimativas baseadas em um computador lento que realiza dez
operacées por segundo.
Os exemplos de tempos de execucao contidos nestes graficos sdo estimativas
para um caso em que vocé executa dez operagdes por segundo. Estes
graficos nao sdo precisos, mas servem apenas para fornecer um exemplo do
quao diferente sao os tempos de execucdo. Na realidade, o seu computador é
capaz de executar muito mais do que dez operagdes por segundo.

Cada tempo de execugdo contém um algoritmo de exemplo anexo. Dé uma
olhada no algoritmo de ordenagao por selecdo, que aprendeu no Capitulo 2.
O seu tempo de execucido é O(n?); é bastante lento.

Ha outro algoritmo de ordenag¢dao chamado merge sort, que tem tempo de
execugdo O(n log n), o que é muito mais rapido! O algoritmo quicksort é
um caso complicado. Na pior situacao, o quicksort tem tempo de execucao
O(n?).

Ele é tao lento quanto a ordenagédo por selecdo! Porém este é o pior caso

possivel. No caso médio, o quicksort tem tempo de execugao O(n log n). E
agora vocé pode estar se perguntando:

o O que significa pior caso e caso médio?

o Se 0 quicksort tem tempo de execu¢do médio O(n log n), e 0 merge sort
tem tempo de execugdo O(n log n) sempre, por que nao utilizar o merge
sort? Nao seria mais rapido?

Merge sort versus quicksort

Suponha que vocé tenha esta simples funcdao que imprime na tela todos os
itens de uma lista:

def imprime_1itens(lista):
for item in lista:
print item
Esta fun¢do analisa cada item da lista e o imprime. Como esta fungdo passa
por toda a lista uma vez, ela tem tempo de execugdo O(n). Agora, imagine
que vocé modificou esta fungdo para que ela aguarde um segundo antes de
imprimir um item:
from time import sleep
def imprime_1itens2(lista):
for item in lista:
sleep(1)
print item
Antes de imprimir um item, ela espera por um segundo. Suponha que vocé
imprima uma lista contendo cinco itens utilizando ambas as funcoes.

[2[a[<]3]9

I'MPrimg_it&nS . 2463 1@

fMFrimE__it'gng D <pcuamie> 2 <acuaree> 4 cacuaroe> O Lacuarte> B <AGUARIE 1935

Ambas as fungdes passam por toda a lista uma vez, portanto elas tém tempo
de execu¢dao O(n). Qual das duas vocé acha que serd mais rapida na pratica?
Acho que a fun¢do imprime_1itens serd muito mais rapida, visto que ela
ndo aguarda um segundo antes de imprimir cada item. Assim, mesmo que
ambas as func¢des tenham o mesmo tempo de execugdo na notagao Big O, a
funcao imprime_itens acaba sendo mais rapida na pratica. Quando vocé
escreve algo na notagao Big O, como O(n), por exemplo, esta querendo dizer
isso.

Cx*h
T

ALGUMA QUANTIDADE
DETERMINADA DE TEMPO

A letra ¢ é uma quantidade determinada de tempo que o seu algoritmo leva
para ser executado. Ela é chamada de constante. Pode ser, por exemplo, 10
milissegundos * n paraa funcdo imprime_1itens contral segundo *
n paraa func¢do imprime_1itens2.

Normalmente vocé ignora a constante, pois, caso dois algoritmos tenham
tempos de execugdo Big O diferentes, a constante ndo importara. Vamos

usar a pesquisa bindria e a pesquisa simples como exemplos deste fato.
Imagine que ambos os algoritmos contenham estas constantes.

1®n~s * N 1seﬂ%Loﬂn
PESQUISA STMPLES PESQUISA BINARIA |

Vocé pode pensar “Nossa! A pesquisa simples contém uma constante de 10
milissegundos, enquanto a pesquisa binaria contém uma constante de um
segundo. A pesquisa simples ¢ muito mais rapida!”. Agora, suponha que
esteja realizando uma busca em uma lista com 4 bilhdes de elementos. A
seguir, pode visualizar os tempos de execucao desta busca.

PESQUISA

stnpies | 1P wms X 4 gindes =463 Jias
P:fﬁ:?: 15&3 7 R £7. = 32 se_jwu!os

Como vocé pode ver, a pesquisa bindria continua sendo muito mais rapida.
A constante ndo causou diferenca alguma no final das contas.

Porém, as vezes, a constante pode fazer diferenca. O quicksort, comparado
ao merge sort, ¢ um exemplo disso. O quicksort tem uma constante menor
do que o merge sort. Assim, como ambos tém tempo de execu¢do O(n log
n), o quicksort acaba sendo mais rapido. Além disso, o quicksort é mais
rapido, na pratica, pois ele funciona mais vezes no caso médio do que no

pior caso.

E agora vocé pode estar se perguntando: o que ¢ o caso médio e o que é o
pior caso?

Caso médio versus pior caso

O desempenho do quicksort depende bastante da escolha do pivo. Imagine
que vocé sempre escolha o primeiro elemento como pivd e que vocé execute
o quicksort em um array que jd esteja ordenado. O quicksort ndo faz uma
checagem para conferir se o array ja esta ordenado. Logo, ele tentard
ordenar o array mesmo assim.

OBBNOEED

J

[1< 2 3]4]5]6] 7]8

) b < =
somenso = [1< B]a]5 s [#18

PRIMEIRO ELEMENTO
\’
[Ko lalslel[e] \ emomon,

J D
[14> 51713
sroyaan

J
[1Le]

Perceba como vocé ndo esta dividindo o array em duas metades. Em vez

disso, um dos subarrays esta sempre vazio, o que faz com que a pilha de
chamada seja sempre muito longa. Agora, imagine que vocé sempre escolha
o elemento central do array como pivo. Perceba como a pilha de chamada ¢

menor.
123[4 5|6]'—f}3 A
TAMANHO DA PILHA

EE’@‘_‘S‘E 719 l? Dﬁzmamm
Ném Sun

[1R

A pilha de chamada é muito menor! Isso acontece porque vocé divide o
array na metade, o que faz com que vocé nao precise fazer tantas execugoes
recursivas. Assim, vocé chega ao caso-base e a pilha de chamada é
consideravelmente menor.

O primeiro exemplo que vocé viu representa o pior caso, enquanto o
segundo exemplo representa o melhor caso. No pior caso, o tamanho da
pilha é O(n). No melhor caso, o tamanho da pilha é¢ O(log n).

Agora, observe o primeiro nivel da pilha. Vocé escolhe um elemento como o
pivo e os demais elementos sao divididos em dois subarrays. Assim, vocé
tem de passar por todos os elementos no array. Logo, esta primeira execugao
tem tempo de execuc¢do O(n). Neste nivel da pilha vocé passa por todos os
elementos do array. Porém em todos os niveis da pilha de chamada vocé
passara por O(n) elementos.

e

.. [1]2]3 4[55?\%]
:EE;ENTM{LLJ@LZ ; 41516 __?-—?l
(14 BRTs el E]
¢
[16> 14]s]s 17]8]
\J

Mesmo que vocé particione o array de forma diferente, continuara passando
por O(n) elementos a cada execucao.

sl [RBEREE]ETE

ELEMENTOS _'

N/
rrsh &fﬂ@@ *”jl"ﬂ
=3 mem oLl

e a2 131456 7]8] A

PARA SER DIVIDIDG

e et e = e

Sxs<gio o() @E ¢|#[3] o
O S O(loah)
e [1]<23) [5)4o [7]¢]

ATE meEsmo E5TE miveL Teve 2 1
TEMPO DE ENECUGAO 0(n) [] | j

Neste exemplo, existem O(log #) niveis (a maneira mais técnica de dizer isso
¢ “O peso da pilha de chamada [ou pilha de execugdo] é O(log n)). Cada
nivel tem tempo de execu¢ao O(n). Além disso, o algoritmo como um todo
tem tempo de execugdo O(n) * O(log n) = O(n log n). Este é o melhor caso.

—_——

No pior caso, existem O(n) niveis. Portanto o algoritmo tem tempo de
execucio O(n) * O(n) = O(n?).

Adivinhe? O melhor caso também é o caso médio. Se vocé sempre escolher
um elemento aleatério do array como pivd, o quicksort sera completado com
tempo de execugdo médio O(n log n). O algoritmo quicksort é um dos mais
rapidos algoritmos de ordenagdo que existem, sendo um 6timo exemplo de
DC.

EXERCICIOS

Quanto tempo levaria, em notagdo Big O, para completar cada uma destas
operagoes?

4.5 Imprimir o valor de cada elemento em um array.

4.6 Duplicar o valor de cada elemento em um array.

4.7 Duplicar o valor apenas do primeiro elemento do array.

4.8 Criar uma tabela de multiplicagdo com todos os elementos do array.
Assim, caso o seu array seja [2, 3, 7, 8, 10], vocé primeiro multiplicara
cada elemento por 2. Depois, multiplicara cada elemento por 3 e entdo
por 7, e assim por diante.

Recapitulando

o A estratégia DC funciona por meio da divisdo do problema em problemas
menores. Se vocé estiver utilizando DC em uma lista, o caso-base
provavelmente sera um array vazio ou um array com apenas um elemento.

« Se voce estiver implementando o quicksort, escolha um elemento
aleatério como o pivo. O tempo de execu¢do médio do quicksort é O(n
log n)!

» A constante, na notaqﬁo Big O, pode ser relevante em alguns casos. Esta é
a razdo pela qual o quicksort é mais rapido do que o merge sort.

o A constante dificilmente sera relevante na comparagao entre pesquisa
simples e pesquisa binaria, pois O(log n) é muito mais rapido do que O(n)
quando sua lista é grande.

5
Tabelas hash

Neste capitulo
« Vocé conhecerd as tabelas hash, uma estrutura de dados basica
muito util.
« Vocé também conhecera os detalhes sobre as tabelas hash:
implementacao, colisdes e funcdes hash.

Imagine que vocé trabalha em um mercado. Quando um cliente compra um
produto, é preciso conferir o preco deste produto em um caderno. Porém, se
o caderno nao estiver organizado alfabeticamente, vocé levara muito tempo
analisando cada linha até encontrar o prego da magd, por exemplo.
Procurando desta forma vocé realizaria uma pesquisa simples, vista no
Capitulo 1, e por meio dela teria de analisar todas as linhas. Vocé lembra
qual era o tempo de execu¢do da pesquisa simples? O(n). No entanto, se o
caderno estivesse ordenado alfabeticamente, poderia executar uma pesquisa
bindria para encontrar o pre¢o da mag¢a com um tempo de execugao O(log
n).

OVOS ...R42,49
LEITE...r$ 1,99
PERA....R$0,74

LISTA ORDENADA LISTA NAO ORDENADA

« OWlogw) = Om

% %

= =

: | P
TEMPO TEMPD

Vale lembrar que existe uma grande diferenca entre um tempo de execugio
O(n) e O(log n)! Suponha que vocé conseguisse ler dez linhas do caderno
por segundo. Na figura a seguir vocé pode ver quanto tempo levaria usando
a pesquisa binaria e a pesquisa simples.

1
e | Ot O(Log h)

VOCE PRECISA VERIFICAR
1@@__ 10 seq | 15@3“" Log 100 = F LINKAS
~ VOCE PRECISA CHECAR
ﬂﬂ?_ l 1.€€ min Iseg Log 1000 = 10 LINHAS
199292 D | 16.6 min 2seq e Log 10000 = 14 LINAS

- 25&9

Vocé ja sabe que a pesquisa bindria é muito mais rapida. Porém, como um
caixa de mercado, vocé ja sabe que procurar o preco de mercadorias em um
caderno é uma tarefa chata, mesmo que este caderno esteja ordenado, pois o
cliente esta fica impaciente enquanto a procura pelo preco dos itens é
realizada. Assim, o que vocé precisa é de um amigo que conheca todas as
mercadorias e 0s seus precos, pois, dessa forma, nao é necessario procurar
nada: vocé pede para este seu amigo e ele informa o preco imediatamente.

67 CENTAVOS

A sua amiga Maggie pode dizer o preco com tempo de execugdo O(1) para
todos os itens, nao importando a quantidade de itens que compdem o
caderno de precos. Dessa forma, ela é ainda mais rapida do que a pesquisa

bindria.

R R
DE ITENS
fo CADERNO O (») 0 (L oq “) O (‘)

199 19 seq 1 seq TNSTANTANED

1 Q GQ l,GMir\ 1 -.5.1'.2(:-11 TNSTANTANEOD
1920 g 16-61min 2_5#3(:-1I INSTANTANEO

Que amiga maravilhosa! Mas, entdo, como vocé arranja uma “Maggie”?

Agora, vamos voltar a falar de estruturas de dados. Vocé ja conhece duas
estruturas até agora: arrays e listas (ndo vou falar sobre as pilhas, pois nao é
possivel “procurar” algo nelas). Seria possivel implementar este seu caderno

de precos como um array.

| (oves, 249 uete, 149 | (plen, 07 |

Cada item neste array ¢, na realidade, uma dupla de itens: um ¢ o nome e o
tipo do produto e o outro é o preco. Se ordenar este array por nome, sera
possivel executar uma pesquisa binaria para procurar o preco de um item.
Logo, é possivel pesquisar itens com tempo de execug¢ao O(log n).
Entretanto nos queremos encontrar itens com tempo de execucao O(1), ou
seja, queremos uma “Maggie”, e é ai que entram as fungdes hash.

Funcdes hash

Uma funcio hash ¢ uma funcdo na qual vocé insere uma string! e, depois
disso, a funcao retorna um nimero.

.“NAMhETE'”-—) +
£ HOLP:"-}) 4
“ ok (P 2

t FONCAO HASH

BT-) o g

Em uma terminologia mais técnica, diriamos que uma fungdo hash “mapeia
strings e numeros’. Vocé pode pensar que nao existe um padrao indicando
qual niimero sera retornado ap6s a inser¢ao de uma string, mas existem
alguns requisitos para uma fun¢ao hash:

« Ela deve ser consistente. Imagine que vocé insere a string “macga” e recebe
o numero 4. Todas as vezes que vocé inserir “maca’, a funcao devera
retornar o numero “4”; caso contrario, sua tabela hash nao funcionara
corretamente.

o A fungio deve mapear diferentes palavras para diferentes nimeros. Desta
forma, uma fungdo hash nao sera ttil se ela sempre retornar “17,
independentemente da palavra inserida. No melhor caso, cada palavra
diferente deveria ser mapeada e ligada a um nimero diferente.

Entao, uma fungdo hash mapeia strings e as relaciona a numeros. Mas qual é
a utilidade disso? Bem, vocé pode usar esta funcionalidade para criar a sua
“Maggie’”!
Comece com um array vazio:

g1 2 3 4

Vocé armazenara os pregos das mercadorias neste array. Vamos adicionar o
preco de uma maga. Insira “ma¢a” na fungdo hash.

™ 3

Ela retornara o valor “3”. Agora, vamos armazenar o pre¢o da maga no
indice 3 do array.

MACA
¥

‘I'ﬂ.&?J
21 2 3 4

Vamos adicionar o leite agora. Insira “leite” na func¢ao hash.

.“LEITE"-)NW >N ﬂ |

A fungao hash retornou “0”. Agora, armazene o preco do leite no indice 0.

LETTE MAGA

) 7
[149 } 0.4 k
51 2z 3 4

Continue e, eventualmente, todo o array estara repleto de precos.

E_H 0.3a lz.-w l{).&? 1,4:,

Agora, vocé podera perguntar “Ei, qual é o preco de um abacate?” e ndo sera
necessario procurar o preco deste produto no array. Em vez disso, insira
<« b2l ~

abacate” na funcao hash.

|
i“nmm:-.”—-r e ko 4

Ela informara o pre¢o armazenado no indice 4.

asacATE = 1.49

LI
-

E.‘H 0.?q|2.+q\o.ﬁ j_:qJ ?

) \

A funcio hash informara a posi¢do exata em que o preco esta armazenado.
Assim, ndo precisara procura-lo! Isto funciona porque

o A fun¢ao hash mapeia consistentemente um nome para o mesmo indice.
Todas as vezes que vocé inserir “abacate’, ela retornara o mesmo ntimero.
Assim, a primeira execugdo da fungdo hash servira para identificar onde é
possivel armazenar o preco do abacate, e depois disso ela sera utilizada
para encontrar este valor armazenado.

o A fun¢ao hash mapeia diferentes strings para diferentes indices. A string
<« » s 4 . . <« . » 7
abacate” é mapeada para o indice 4. A string “leite” é mapeada para o
indice 0. Todas as diferentes strings sdo mapeadas para diferentes lugares
do array onde vocé esta armazenando os pregos.

o A fun¢do hash tem conhecimento sobre o tamanho do seu array e
retornara apenas indices validos. Portanto, caso o seu array tenha cinco
itens, a funcao hash nao retornara 100, pois este valor ndo seria um indice
valido do array.

Vocé acabou de criar uma “Maggie”! Coloque uma funcao hash em conjunto
com um array e vocé tera uma estrutura de dados chamada tabela hash.
Uma tabela hash é a primeira estrutura de dados que tem uma logica
adicional aliada que vocé aprenderd, visto que arrays e listas mapeiam
diretamente para a memoria, porém as tabelas hash sdo mais inteligentes.
Elas usam uma fun¢ao hash para indicar, de maneira inteligente, onde
armazenar os elementos.

As tabelas hash sao, provavelmente, as mais uteis e complexas estruturas de
dados que vocé aprendera. Elas também sdo conhecidas como mapas hash,
mapas, dicionarios e tabelas de dispersao. Além disso, as tabelas hash sao
muito rapidas! Vocé se lembra da nossa discussao sobre arrays e listas
encadeadas no Capitulo 2?2 Vocé pode pegar um item de um array
instantaneamente que as tabelas hash usarao arrays para armazenar os
dados desse item; desta forma, elas sdo igualmente velozes.

W4 LA
i L

Vocé provavelmente nunca tera de implementar uma tabela hash, pois
qualquer linguagem de programacao ja terd uma implementagao dela. A
linguagem Python contém tabelas hash chamadas de diciondrios. Para criar
uma nova tabela hash vocé pode utilizar a funcao dict:

>>> caderno = dict()

Book (caderno) ¢ uma nova tabela hash. Agora, vamos adicionar alguns
precos a ela.

W manid,

UM THBELA i O
BRECHS O PROTS

>>> caderno["macd"] = 0.67 @

>>> caderno["leite"] = 1.49 ©

>>> caderno["abacate"] = 1.49

>>> print caderno

{'abacate': 1.49, 'macad': 0.67, 'leite': 1.49}
©® Uma maca custa 67 centavos.
® O leite custa RS 1,49

Facil! Agora, vamos perguntar o preco de um abacate:

>>> print caderno["abacate"]
1.49 ©

® O preco de um abacate.
Uma tabela hash contém chaves e valores. Na hash caderno, os nomes dos

produtos sdo as chaves e os precos sdo os valores. Logo, uma tabela hash
mapeia chaves e valores.

Na préxima se¢do vocé verd alguns exemplos em que as tabelas hash sao
muito uteis.

EXERCICIOS

E importante que fun¢des hash retornem o mesmo valor de saida quando o
mesmo valor de entrada for inserido. Caso contrario, nao sera possivel
encontrar o item que vocé deseja na tabela hash!

Quais destas fun¢oes hash sdo consistentes?

51f(x) =1 O

52 f(x) = rand() &

5.3 f(x) = proximo_espaco vazio() ©
54 f(x) = len(x) O

O Retorna “1” para qualquer entrada.

® Retorna um numero aleatério a cada execucao.
® Retorna o indice do préximo espaco livre da tabela hash.
® Usa o comprimento da string como indice.

Utilizacao
Tabelas hash sao amplamente utilizadas. Nesta se¢do, vamos analisar alguns
Casos.

Usando tabelas hash para pesquisas

BADE MAMA
ALEX MANNING |

TANG MARIN
SHEFALL MAWS|
SABEEN MINNS

O seu celular tem uma agenda telefonica integrada.

Cada nome esta associado a um numero telefdnico.

BADE MAMA —> 53\ 6@ 1328
ALEX MANNING —> 494 234 443Q

JANE MARWN —> 4|5 567 3574

Imagine que vocé queira construir uma lista telefonica como esta. Sera
necessario mapear o nome das pessoas e associa-los a numeros telefonicos.
Dessa forma, a sua lista telefobnica devera ter estas funcionalidades:

o Adicionar o nome de uma pessoa e o numero de telefone associado a este
nome.

o Inserir o nome de uma pessoa e receber o numero telefénico associado a
ela.

Este é um exemplo perfeito de situagcdes em que tabelas hash podem ser
usadas! As tabelas hash sdo 6timas op¢des quando

o Vocé deseja mapear algum item com relagao a outro
o Vocé precisa pesquisar algo
Criar uma lista telefonica é uma tarefa simples. Primeiro, faca uma nova
tabela hash para lista_telefonica:
>>> lista_telefonica = dict()
A proposito, a linguagem Pyhton tem um atalho para a criagdo de tabelas
hash utilizando duas chaves:
>>> lista_telefonica = {} @

O Igual ao que foi feito com lista_telefonica = dict().

wy (W |

=
L

UM THBELA HASH COMD
KA LISTA TELERONIGh

Entao vamos adicionar o nimero de algumas pessoas nesta lista:

>>> lista_telefonica["jenny"] = 8675309

>>> lista_telefonica["emergency"] = 911
E isso! Agora, digamos que queira encontrar o numero de telefone da Jenny.
Para isso, é necessario apenas informar a chave para a hash:

>>> print lista_telefonica["jenny"]
8675309 ©

O Numero de telefone da Jenny.

Imagine que tivesse de fazer isto utilizando um array. Como faria? As tabelas
hash tornam simples a modelagem de uma relagao entre dois itens.

As tabelas hash sao usadas para pesquisas em uma escala muito maior. Por
exemplo, suponha que vocé queira acessar um website como o http://adit.io.
O seu computador deve traduzir adit.io para a forma de um endereco de IP.

| ADIT.10 —> |73.255.243.55

Para cada website que vocé acessar, o endereco devera ser traduzido para
um endereco de IP.

| GOOGLE.COM —> 74,125, 234.133
FACEBOOK.COM=>» |73,.252 .12¢.6
ScRIBD.CoMm —=> 23.235,47F.|#5

Nossa, mapear o endereco de um website para um endereco IP? Isso parece
o caso perfeito para a utilizacao de tabelas hash! Este processo é chamado de
resolugdo DNS, e as tabelas hash sdo uma das maneiras pelas quais esta
funcionalidade pode ser implementada.

-

Evitando entradas duplicadas

Imagine que esteja organizando uma votagdo. Obviamente, cada pessoa
podera votar apenas uma vez. Como vocé pode verificar se uma pessoa ja
ndo votou antes? Vocé pode perguntar para a pessoa que veio votar qual é o
seu nome completo e entdo conferir esse nome em uma lista que contenha o
nome das pessoas que ja votaram.

Se 0 nome dessa pessoa estiver na lista, isso significa que ela ja votou, ou
seja, vocé deve dispensa-la! Caso contrario, vocé devera adicionar o nome
dela na lista e permitir que ela vote. Agora, suponha que diversas pessoas
chegaram para votar e que, além disso, a lista de pessoas que ja votaram seja
muito longa.

A cada nova pessoa que chegar para votar, vocé devera conferir esta lista
enorme para checar se esta pessoa ja votou. No entanto, temos uma solugdo
melhor: use uma hash!

Primeiro, crie uma hash votaram para registrar as pessoas que ja votaram:

>>> votaram = {}

Quando alguém chegar para votar, confira se 0 nome desta pessoa ja estd na
hash:

>>> valor = votaram.get("tom")

A fungdo get (pegar) retornara um valor se “Tom” ja estiver na tabela hash.
Caso contrario, ela retornara None (nada). Vocé pode usar esta
funcionalidade para conferir se as pessoas ja votaram!

QUANDO ALGUEM
CHEGAR PARA VOTAR

VERIFIQUE‘ 5€ E5TA
LPE&&G& ESTA NA HASH

o> SN W

ESTA: NAD E5STA:
MANDE DEINE
EMBORA! VOTAR!

ADICIONE O NOME
DELA A HASH

Aqui vocé pode conferir o codigo completo:

voted = {}

def verifica_eleitor(nome):
if votaram.get(nome):
print "Mande embora!"
else:
voted[nome] = True
print "Deixe votar!"

Vamos fazer alguns testes:

>>> verifica_eleitor("tom")

Deixe votar!

>>> verifica_eleitor("mike")

Deixe votar!

>>> verifica_eleitor("mike")

Mande embora!
Na primeira vez que Tom for inserido, aparecera a mensagem na tela “Deixe
votar!”. Depois, o nome Mike serd inserido e novamente a mensagem “Deixe
votar!” serd mostrada na tela. Por fim, Mike serd inserido mais uma vez e a
mensagem “Mande embora!” surgira na tela.

Lembre-se: se vocé estivesse armazenando estes nomes em uma lista de
pessoas que ja votaram, esta fun¢do se tornaria muito lenta eventualmente,
pois uma pesquisa simples seria utilizada para pesquisar em toda a lista.
Porém vocé estd armazenando estes nomes em uma tabela hash, e a tabela
hash informa instantaneamente se 0 nome da pessoa estd ou ndo na lista.
Logo, a checagem por duplicatas ¢ realizada muito rapidamente com o uso
de uma tabela hash.

s NS

Utilizando tabelas hash como cache

Apresentaremos um ultimo uso para tabelas hash: utilizagdo como cache. Se
vocé trabalha com websites, talvez ja tenha ouvido falar sobre a utiliza¢ao de

cache como uma boa pratica. A ideia é esta: imagine que vocé visite

facebook.com:
1. Vocé faz uma solicitacdo aos servidores do Facebook.

2. O servidor pensa por um segundo e entdo envia uma pagina web.

3. Vocé recebe uma péagina da web.

PAGINA DA WEB!

VOCE SERVIDOR . |
\ -
SERVIDOR G mum
FAL ALGUMAS — —— -
TAREFAS 5 e
| — =
A LY

O servidor do Facebook pode estar coletando toda a atividade dos seus
amigos para entdo mostrar a vocé, por exemplo. Para coletar todos estes
dados, o servidor pode levar alguns segundos. Entretanto estes poucos
segundos podem parecer uma eternidade, e vocé pode pensar “Por que o
Facebook esta tao lento?”. Por outro lado, o servidor do Facebook precisa
responder a solicitagdes de milhdes de pessoas, e estes poucos segundos vao
se acumulando. Ou seja, o servidor do Facebook esta trabalhando duro para
responder a todas as solicitacdes. Mas sera que existe alguma maneira de
tornar o Facebook mais rapido e fazer com que os seus servidores trabalhem
menos?

Suponha que vocé tenha uma sobrinha que faga muitas perguntas sobre
planetas do tipo “O qudo distante Marte fica da Terra?”, “Qual a distancia até
a Lua?” e “Qual a distancia até Jupiter?”. A cada pergunta vocé precisa
pesquisar no Google a resposta e s6 entdo vocé conseguird responder. Logo
vocé tera memorizado que a Lua fica a 384.400 km de distancia e nao
precisara mais procurar esta resposta no Google. E desta forma que o cache
funciona: os websites lembram dos dados em vez de recalculd-los a cada
solicitacao.

Caso voceé esteja conectado ao Facebook, saiba que todo o conteudo que
vocé vé foi feito sob medida. Assim, todas as vezes que vocé acessa a pagina
facebook.com, os servidores precisam pensar e selecionar qual conteudo é
de seu interesse. Porém, se vocé nao estiver logado ao Facebook, vera apenas
a pagina de login, sendo que todas as pessoas verao a mesma pagina de
login. Ou seja, o Facebook engloba diversas solicitagdes para a mesma
informagao: “Mostre-me a pagina inicial quando eu nao estiver logado”. Isso
evita que o servidor tenha de pensar como a pagina inicial ¢, pois ele
memoriza como a pagina inicial deve ser apresentada e entdo a envia a vocé.

S e
- - e -_—
MNAD ESTA —> TR
LOGADA |
i ” phGIng DA N

WEB SALVA!

ZAN
ﬂé PAGINA DA WEB!

\ SERVIDOR
— FAZ ALGUMAS — >
—>
LOGADA TAREFAS .

Isso se chama caching, e esta pratica oferece duas vantagens:

« Vocé recebe a pagina da web muito mais rapidamente, da mesma forma
que vocé memorizou a distancia entre a Terra e a Lua. Assim, da préxima
vez que sua sobrinha perguntar sobre isso, ndo sera necessario pesquisar
no Google, pois vocé conseguira responder instantaneamente.

O Facebook precisa trabalhar menos.

Esta técnica ¢ uma maneira comum de agilizar as coisas. Todos os grandes

sites usam caching, e os dados destes cachings sdo armazenados em uma
tabela hash!

O Facebook nao esta so aplicando o caching na pagina de entrada. Ele esta
fazendo cache das paginas Sobre, Contato, Termos e Condi¢des e muitas
outras. Assim, ele precisa mapear a URL de uma pagina e relaciona-la aos
dados da pagina.

face Look.com/ about —> DADOS DA PAGINA SOBRE

FocebooK.com —3 pADOS DA PAGINA INICIAL

Quando vocé visitar uma pagina no Facebook, este ira primeiro checar se
esta pagina esta armazenada na hash.

SOLICITA UMA
URL DO FACEBOOK

E5TA URL
ESTA NA HASHZ

[N

STM: HEDE
RETORNA 05 FAZ O SERVIDOR
DADOS DO CACHE EXECUTAR
ALGUMA TAREFA

Aqui vocé pode ver isso em forma de codigo:

cache = {}
def pega_pagina(url):
if cache.get(url):
return cache[url] @
else:
dados = pega_dados_do_servidor(url)
cache[url] = dados ®
return dados
O Retorna os dados do cache.

@ Salva esses dados primeiro no seu cache.

Desta forma, vocé faz o servidor trabalhar apenas se a URL ndo estiver
armazenada no cache. Antes de vocé retornar os dados, eles serdo salvos no
cache. Assim, a proxima vez que alguém solicitar esta URL, vocé podera
enviar os dados do cache em vez de fazer o servidor executar esta tarefa.

Recapitulando
As tabelas hash sao uteis para

« Modelar relacdes entre dois itens

o Filtrar por duplicatas

o Caching/memorizacdo de dados, em vez de solicitar estes dados do
servidor.

Colisoes

Como eu disse antes, a maioria das linguagens de programacgao contém
tabelas hash, por isso vocé nao precisa escrevé-las do zero. Sendo assim, ndo
falarei muito sobre a estrutura das tabelas hash. No entanto vocé precisa
saber sobre o desempenho delas, e para isso precisa primeiro entender o que
sao colisdes. As duas proximas se¢des falam sobre colisdes e desempenho.

Primeiro, preciso dizer que estive contando uma pequena mentira. Disse

que uma fun¢do hash sempre mapeia diferentes chaves para diferentes
espagos em um array.

|
e LEITE"\)
wamenxa”_—3(>

” FUNGAO
capachTe?" e

Na realidade, é praticamente impossivel escrever uma funcao hash que faca
isso. Vamos analisar este exemplo simples: suponha que vocé tenha um
array que contenha 26 espacos.

I ITTTITIIT I IT I T T ﬁ

10 11 12 13 14 15 16 17 1% 19 20 21 z32 23 24 25

Sua funcao hash é bem simples: ela apenas indica um espago do array
alfabeticamente.

Al B:q::n«u Is vio
Cs vin s vils Ayt
{ BADE cie ik e it AAU‘IE L

(LT LTI TI I I JI T I T T 1]1]

2 q 10 {1 17 13 14 15 16 (17 1% 19 20 21 z2 23 24 25

Talvez vocé ja consiga ver o problema. Vocé quer inserir o pre¢o de uma
ameixa na sua hash. Assim, o primeiro espaco do array é indicado.

0.67

ame1xas S

Depois, vocé quer inserir o preco das bananas. Entdo, o segundo espaco do
array ¢ indicado.

[0.6#] 03] ..
AMEIXAS 7 P

Tudo esta indo tao bem! Mas agora quer inserir o preco dos abacates na sua
hash. Entdo, o primeiro espago do array é indicado novamente.

06%| 039 | -

AMEIXASZ 2~ AL BANANAS
ABACATESZ

Ah, ndo! As ameixas ja estdo neste espaco! O que vamos fazer? Isso se
chama colisdo: duas chaves sao indicadas para o mesmo espaco, e isto é um
problema. Assim, se armazenar o preco dos abacates neste espaco, eles irdo
sobrescrever o preco das ameixas. Desta forma, da préxima vez que alguém
perguntar o preco das ameixas, o preco dos abacates sera informado!
Colisdes sao um problema, e vocé precisa soluciona-lo. Para isso ha varias
alternativas, e a mais simples € esta: se diversas chaves mapeiam para o
mesmo espaco, inicie uma lista encadeada neste espaco.

'__——] Mamexas| 0.6F ﬂ——{mmes 1.49]
=3

i
PREGD DAS
BANANAS

s

Neste exemplo, tanto a “ameixa” quanto o “abacate” sio mapeados para o
mesmo espaco. Logo, vocé deve iniciar uma lista encadeada neste espaco.
Caso vocé queira saber o preco das bananas, esta informacao ainda sera
acessada de maneira rapida. Porém, se vocé quiser saber o preco das
ameixas, essa informacdo sera retornada de forma mais lenta, pois vocé
precisara pesquisar na sua lista encadeada para encontrar “ameixas”. Se a
lista encadeada for pequena, nao havera nenhum problema, pois vocé
devera pesquisar entre trés ou quatro elementos. Mas imagine que vocé
trabalha em um mercado onde sdo vendidos apenas produtos que iniciam
com a letra A.

A F—ﬁimﬁ | o.ﬁ.?‘ -} ¥ apacates | 1.49 _Hn;.éumm 2.99 -——)‘ nstai:i;l -
B
&
TOLOS ESTES ESPACOS
5 FORAM DESPERDICADOS
E

Ei, espere um pouco ai! Quase toda a tabela hash esta vazia, exceto por um
espaco, e neste espaco ha uma lista gigante linkada! Ou seja, cada elemento
dessa tabela hash esta contido nessa lista. Isso é tao ineficiente quanto
colocar todos esses elementos apenas na lista encadeada, pois essa lista
diminuira o tempo de execu¢do da sua tabela hash.

Aprendemos duas li¢des aqui:

o A fungdo hash é muito importante. Ela mapeia todas as chaves para um
unico espago. Idealmente, a sua fun¢do hash mapearia chaves de maneira

simétrica por toda a hash.

« Caso as listas encadeadas se tornem muito longas, elas diminuirdo demais
o tempo de execucdo da tabela hash. Porém elas ndo se tornardo muito
longas se vocé utilizar uma boa fungdo hash!

As fungdes hash sao importantes, pois uma boa funcao hash cria poucas
colisdes. Mas como vocé escolhe uma boa funcao hash? E isso que veremos
na préxima se¢ao!

Desempenho

Vocé iniciou este capitulo em um supermercado, pois era necessario criar
algo que fornecesse os precos dos produtos instantaneamente. Bem, as
tabelas hash sdo muito rapidas.

CAS0 PIOR
MmeDIO CAS0

procura | O(1) O(h),
INSERGAO O(1) O (n)
REMOCAD O(1) O@")

|)
DESEMPENHO DAS TABELAS HASH

No caso médio, as tabelas hash tém tempo de execug¢do O(1) para tudo.
Assim, O(1) é chamado de tempo constante. Vocé ainda nao foi apresentado
a tempo constante. Tempo constante nao ¢ algo que acontece
instantaneamente, mas sim um tempo que continuara sempre o mesmo,
independentemente de qudo grande a tabela hash possa ficar. Por exemplo,
vocé sabe que a pesquisa simples tem tempo de execuc¢do linear.

Qv

TEMPO DE
EXECUGAO LINEAR
(PESQUISA SIMPLES)

A pesquisa binaria é mais rapida, pois tem tempo de execucio log:

oo
TEMPO DE

EXECUGAC LOG
(PESQUISA BINARIA)

Procurar algo em uma tabela hash tem tempo de execuc¢ao constante.

oW
TEMPO DE
EXECUGAD CONSTANTE
(TABELAS HASH)

Percebe como ¢ uma linha reta? Isso significa que nao importa se a sua
tabela hash tem 1 elemento ou 1 bilhao de elementos, pois o retorno da
tabela hash sempre levara a mesma quantidade de tempo. Na verdade, vocé
ja viu tempo constante antes, pois retornar um item de um array leva um

tempo constante. Novamente, ndo importa o tamanho do array, pois ele
sempre levara a mesma quantidade de tempo para retornar um elemento.
No caso médio, as tabelas hash sdo muito rapidas.

No pior caso, uma tabela hash tem tempo de execugdao O(n), ou seja, tempo
de execucdo linear para tudo, o que ¢ bem lento. Vamos comparar as tabelas
hash com os arrays e com as listas.

TABELAS HASH TABELAS HASH LISTAS
(cAso mepIo) (PIOR CASO) ARRAYS ENCADEADAS

BUSCA 0(1)__ 0w | QW[O™

e i

wsereio | () (1) Owy |0 | (XD

o

———

REMOCAO O(i) O(“)— Oy O(D

- i

Preste atencdo ao caso médio para as tabelas hash. As tabelas hash sdo tao
velozes quanto os arrays na busca (pegar um valor em algum indice), e elas
sdo tao velozes quanto as listas na inser¢ao e na remocao de itens. Ou seja,
ela é o melhor dos dois mundos! Porém, no pior caso, as tabelas hash sao
lentas em ambos os casos. Assim, ¢ importante que vocé ndo opere no pior
caso; para isso é preciso evitar colisdes. Para evitar colisdes sdo necessarios

« um baixo fator de carga;

« uma boa funcao hash.

Nota

Antes de iniciar esta secao, saiba que ela ndo é uma leitura obrigatéria, pois falarei sobre
como implementar uma tabela hash. Porém vocé provavelmente nunca fard isso. Nao
importa a linguagem na qual vocé programe, ela tera uma implementacao de tabela hash
ja agregada. Assim, é possivel usar esta tabela hash agregada e admitir que ela tera um
bom desempenho. A préxima secao pode ser considerada uma espiada dentro do capd
para analisar o funcionamento do motor.

Fator de carga

O fator de carga de uma tabela hash ¢é simples de calcular.

NUMERO DE ITENS
NA TABELA HASH

—

NUMERO TOTAL
DE ESPAGOS

As tabelas hash utilizam um array para armazenamento, entao vocé deve
contar o numero de espagos usados no array. Por exemplo, esta tabela hash
tem fator de carga de 2/5, ou 0,4.

OCUPADOS
N

{
| 2] |4

FATOR DE CARGA = ¥k

Qual o fator de carga desta tabela hash?

[1281]

FATOR DE CARGAZ

Se vocé disse um terco, acertou. O fator de carga mede quantos espagos
continuam vazios na sua tabela hash.

Suponha que vocé precise armazenar o pre¢o de cem produtos em sua tabela
hash, considerando que ela tenha cem espacos. Na melhor hipdtese, cada
item tera seu proprio espaco.

PREGO DE
¥ UMA AMEIXA
prEGO A 1.4 | 0.61 elc..
Do LEITE

Esta tabela hash tem um fator de carga de 1. E se a tabela hash tivesse apenas
cinquenta espagos? Neste caso, ela teria um fator de carga de 2, sendo
impossivel que cada item tenha o seu prdéprio espago, pois ndo existem
espagos suficientes! Um fator de carga maior do que 1 indica que vocé tem

mais itens do que espagos em seu array. Se o fator de carga comecar a
crescer, sera necessario adicionar mais espagos em sua tabela hash. Isso se
chama redimensionamento. Suponha, por exemplo, que vocé tenha esta
tabela hash que estd quase cheia:

4]3]1
\.._.-—-—-v"‘_""‘—-"/
FATOR DE CARGA = 3/

E necessario redimensionar esta tabela hash. Para isso, primeiro vocé deve
criar um array maior. Empiricamente, definiu-se que este array deve ter o
dobro do tamanho do array original.

Agora é necessario reinserir todos os itens nesta nova tabela hash utilizando

[T4l [T T 1]

FATOR DE CARGA = */g

a funcdo hash:

Esta nova tabela tem um fator de carga de % (trés oitavos). Bem melhor!
Com um fator de carga menor haverd menos colisdes e sua tabela terd
melhor desempenho. Uma boa regra geral é: redimensione quando o fator
de carga for maior do que 0,7.

Vocé pode estar pensando “Redimensionar leva muito tempo!”, e isto é
verdade. O redimensionamento é caro e nao deve ser feito com frequéncia.
No entanto, em média, as tabelas hash tém tempo de execucao O(1), mesmo
com o redimensionamento.

Uma boa funcao hash

Uma boa fungado hash distribui os valores no array simetricamente.

[2] Ts4 (12| |

Uma funcao hash nao ideal agrupa valores e produz diversas colisoes.

—

nnaEEn
£

Mas o que ¢ uma boa funcao hash? Isso ¢ algo com que vocé jamais devera
se preocupar, pois homens (e mulheres) velhos e barbudos sentam em
quartos escuros e se preocupam com isso. Se vocé é muito curioso, dé uma
olhada na fun¢ao SHA (ha uma breve descricao sobre ela no dltimo
capitulo). Vocé pode usar aquilo como sua fungio hash.

- ot

EXERCICIOS

E importante que fun¢des hash tenham uma boa distribui¢io. Dessa forma,
elas ficam com o mapeamento mais amplo possivel. O pior caso é uma
funcao hash que mapeia todos os itens para o mesmo espaco da tabela hash.

Suponha que vocé tenha estas quatro fungdes hash que operam com strings:
a. Retorne “1” para qualquer entrada.
b. Use o comprimento da string como o indice.

c. Use o primeiro caractere da string como indice. Assim, todas as strings
que iniciam com a letra a sdo hasheadas juntas e assim por diante.

d. Mapeie cada letra para um ndmero primo:a=2,b=3,c=5,d=7,e=
11, e assim por diante. Para uma string, a fun¢do hash ¢ a soma de todos

os caracteres-modulo? conforme o tamanho da hash. Se o tamanho de sua
hash for 10, por exemplo, e a string for “bag’, o indice serd (3 +2 + 17) %
10=22% 10 = 2.

Para cada um destes exemplos, qual fun¢io hash fornecera uma boa
distribui¢cdo? Considere que o tamanho da tabela hash tenha dez espacos.

5.5 Uma lista telefonica em que as chaves sdo os nomes e os valores sdo os
numeros telefonicos. Os nomes sao os seguintes: Esther, Ben, Bob e Dan.

5.6 Um mapeamento do tamanho de baterias e sua devida poténcia. Os
tamanhos sio A, AA, AAA e AAAA.

5.7 Um mapeamento de titulos de livros e autores. Os titulos sao Maus, Fun
Home e Watchmen.

Recapitulando

Vocé provavelmente nunca tera de implementar uma tabela hash, pois a
linguagem de programacao que vocé utiliza deve fornecer uma
implementacdo desta funcionalidade. E possivel usar a tabela hash do
Python e acreditar que ela operara no caso médio de desempenho: tempo de
execuc¢ao constante.

As tabelas hash sao estruturas de dados poderosas, pois elas sio muito
rapidas e possibilitam a modelagem de dados de uma forma diferente. Logo
vocé estara utilizando-as o tempo todo:

o Vocé pode fazer uma tabela hash ao combinar uma fung¢ao hash com um
array.

o Colisoes sao problemas. E necessario haver uma funcao hash que
minimize colisdes.

o As tabelas hash sao extremamente rapidas para pesquisar, inserir e
remover itens.

o Tabelas hash sdo boas para modelar relacdes entre dois itens.

« Se o seu fator de carga for maior que 0,7, serd necessario redimensionar a
sua tabela hash.

o As tabelas hash sdo utilizadas como cache de dados (como em um
servidor da web, por exemplo).

o Tabelas hash sdao 6timas para localizar duplicatas.

10 oUT 8 ABR

1 String, neste caso, significa qualquer tipo de dado - uma sequéncia de bytes.
2 N.T.: A opera¢ao mddulo encontra o resto da divisio de um numero por outro

6

Pesquisa em largura

Neste capitulo

« Vocé aprendera como modelar uma rede usando uma estrutura de
dados nova e abstrata: grafos.

- Vocé conhecera a pesquisa em largura, um algoritmo que pode ser

executado utilizando grafos para responder a perguntas como
“Qual o menor caminho até X?"

- Vocé aprendera a diferenca entre grafos direcionados e nao
direcionados.

- Vocé conhecera a ordenacao topoldgica, um algoritmo de
ordenacao diferente que expde dependéncias entre vértices.

Este capitulo introduzira o conceito de grafos. Primeiro, falarei sobre o que
sao grafos (eles ndo envolvem um eixo X ou Y). Entao, apresentarei seu
primeiro algoritmo usando grafos, chamado pesquisa em largura (do inglés
breadth-first search, BES).

A pesquisa em largura permite encontrar o menor caminho entre dois
objetos. Porém o menor caminho pode significar tantas coisas! Para
exemplificar, é possivel usar pesquisa em largura para:

o Escrever um algoritmo de inteligéncia artificial que calcula o menor
numero de movimentos necessarios para a vitdria em uma partida de
damas.

o Criar um corretor ortografico (o qual calcula o menor numero de edigdes
para transformar a palavra digitada incorretamente em uma palavra real;
por exemplo, para modificar LEITOT -> LEITOR ¢ necessaria apenas uma
edicdo).

« Encontrar o médico conveniado ao seu plano de saude que esta mais
préximo de vocé.

O algoritmo de grafos ¢ um dos algoritmos mais uteis que conhego. Por isso
leia os préximos capitulos com cuidado, pois esses algoritmos sdo aplicaveis
a diversas situacdes.

Introducao a grafos

Suponha que vocé esteja em San Francisco e queira ir das Twin Peaks (duas
montanhas localizadas no centro da cidade) até a ponte Golden Gate. Vocé
pretende chegar 1a de dnibus, porém quer fazer transferéncia de um 6nibus
para outro o menor numero de vezes possivel. Suas op¢des sdo:

ONIBUS #h44

ONIBUS #33

Qual algoritmo vocé propde para encontrar o caminho com o menor
numero de etapas?

Bem, vocé consegue chegar ao seu destino com uma etapa? Aqui estdo todos
os lugares para os quais é possivel chegar com uma etapa:

-~

by
A ponte nao esta destacada, logo ndo é possivel chegar la com uma etapa. E
com duas etapas?

- -
.l‘.q,

Mais uma vez, a ponte ndo esta destacada, logo vocé nao pode chegar la com
duas etapas. E com trés etapas?

Aha! Agora a ponte Golden Gate esta destacada. Entdo, sdo necessarias trés
etapas para ir da Twin Peaks até a ponte por meio dessa rota.

& ETAPA 2
‘E-‘?"?hm / . “ 5?,2;;,4
g)
2 . ey b

Existem outras rotas que levam vocé até a ponte, mas elas sdo mais longas
(quatro etapas). O algoritmo descobriu que o caminho mais curto até a

ponte demanda trés etapas. Esse tipo de problema é chamado de problema
do caminho minimo. Neste problema, vocé sempre tentara achar o caminho
minimo para algo, como por exemplo a rota mais curta até a casa de seu
amigo, ou também o nimero minimo de movimentos para dar xeque-mate
em um jogo de xadrez. O algoritmo que resolve problemas de caminho
minimo é a pesquisa em largura.

Para descobrir como ir da Twin Peaks até a ponte Golden Bridge existem
duas etapas:

1. Modele o problema utilizando grafos.
2. Resolva o problema utilizando a pesquisa em largura.

Em seguida, falarei sobre o que sao grafos. Depois, abordarei a pesquisa em
largura em mais detalhes.

O que é um grafo?

Um modelo de grafo é um conjunto de conexdes. Por exemplo, suponha que
vocé e seus amigos estejam jogando poquer e que vocé queira descrever
quem deve dinheiro a quem. Vocé poderia dizer “Alex deve dinheiro a
Rama”

ALEX

O grafo completo poderia ser algo do tipo:

Grafo de pessoas que devem dinheiro a outras pessoas em uma partida
de poquer.
Alex deve dinheiro a Rama, Tom deve dinheiro a Adit, e assim por diante.
Cada grafo é constituido de vértices e arestas.

VERTICE VERTICE
Rl ARESTA B \

J

ALEX

E isso é tudo! Grafos sdo formados por vértices e arestas, e um vértice pode
ser diretamente conectado a muitos outros vértices, por isso os chamamos
de vizinhos. Neste grafo, Rama é vizinha de Alex. Ja Adit ndo é vizinho de
Alex, pois eles nao estao diretamente conectados, mas Adit é vizinho de
Rama e de Tom.

Os grafos sao uma maneira de modelar como eventos diferentes estao

conectados entre si. Agora vamos ver a pesquisa em largura na pratica.

Pesquisa em largura

No6s conhecemos um algoritmo de pesquisa no Capitulo 1: a pesquisa
bindria. A pesquisa em largura é um tipo diferente de algoritmo, pois utiliza
grafos. Este algoritmo ajuda a responder a dois tipos de pergunta:

o 1: Existe algum caminho do vértice A até o vértice B?
e 2: Qual o caminho minimo do vértice A até o vértice B?

Vocé ja viu a pesquisa em largura em agao uma vez quando calculou a rota
mais curta do Twin Peaks até a ponte Golden Gate. Essa pergunta foi do tipo
2: “Qual é o caminho minimo?”. Agora vamos analisar o algoritmo em mais
detalhes, e vocé farda uma pergunta do tipo 1: “Existe um caminho?”.

Vamos supor que vocé seja o dono de uma fazenda de mangas e esteja
procurando um vendedor de mangas que possa vender a sua colheita. Vocé

conhece algum vendedor de mangas no Facebook? Bem, vocé pode
procurar entre seus amigos.

cLivE

BoB

ALCE

Essa pesquisa é bem direta. Primeiro, faga uma lista de amigos para
pesquisar.

O cLAIRE
-L,‘ a1 T_‘.: \‘;J

Agora va até cada pessoa da lista e verifique se esta pessoa vende mangas.

_1 5Im: PRONTO

ALICE VENDE
—>
MANGAS2 N o
__/'/
sIM: PRONTO
BOB VENDE
=¥ MANGAST N\ o
O cLARE
J_'—-—-__
YTl T CLATRE VENDE A 5Im: PRONTO
7 MANGAS? N
TR ™S NAO: NENHUM AMIGO
VENDE MANGAS

Imagine que nenhum de seus amigos ¢ um vendedor de mangas. Entao, sera
necessario pesquisar entre os amigos dos seus amigos.

ALICE

Cada vez que vocé pesquisar uma pessoa da lista, todos os amigos dela serdo
adicionados a lista.

. 5IM: PRONTO
B Atet | m—i’iﬁﬁbﬁ —> NAo: ADICIONE TOD05 05y 1O CLA
. AMIGOS DA ALTCE NA ~ 7 "5 peceny -
LISTA DE PROCURA et o
PEGGY FOI
AbDIcIONADA
NA LIsTA

Dessa maneira vocé ndo pesquisa apenas entre os seus amigos, mas também
entre os amigos deles. Lembre-se de que o objetivo é encontrar um vendedor
de mangas em sua rede. Entdo, se Alice ndo ¢ uma vendedora de mangas,
vocé adicionara também os amigos dela a lista. Isso significa que,
eventualmente, pesquisard entre os amigos dela e entre os amigos dos
amigos, e assim por diante. Com esse algoritmo vocé pesquisara toda a sua
rede até que encontre um vendedor de mangas. Isto é o algoritmo da
pesquisa em largura em agdo.

Encontrando o caminho minimo

Relembrando, existem dois tipos de pergunta que a pesquisa em largura
responde:

o 1: Existe um caminho do vértice A até o vértice B? (Existe um vendedor
de manga na minha rede?)

e 2: Qual 0 caminho minimo do vértice A até o vértice B? (Quem € o
vendedor de manga mais préximo?)

Vocé ja sabe a resposta para a pergunta 1. Agora, vamos tentar responder a
pergunta 2. Vocé consegue encontrar o vendedor de mangas mais proximo?
Por exemplo, seus amigos sdo conexdes de primeiro grau e os amigos deles
sdo conexoes de segundo grau.

" Bog
CLAIRE
| ALICE
[ANUS

| pe
GRS PEGEY
THoM

 JONNY

Vocé preferiria uma conexdo de primeiro grau em vez de uma conexao de
segundo grau, e uma conexao de segundo grau a uma de terceiro grau, e
assim por diante. Portanto ndo se deve pesquisar nenhuma conexao de
segundo grau antes de vocé ter certeza de que ndo existe uma conexao de
primeiro grau com um vendedor de mangas. Bem, a pesquisa em largura ja
faz isso! O funcionamento da pesquisa em largura faz com que a pesquisa
irradie a partir do ponto inicial. Dessa forma, vocé verificara as conexodes de
primeiro grau antes das conexdes de segundo grau. Pergunta rdpida: Quem
sera verificado primeiro, Claire ou Anuj? Resposta: Claire é uma conexao de
primeiro grau e Anuj é uma conexdo de segundo grau, logo Claire sera
verificada antes de Anuj.

£
GRAUY

Outra maneira de ver isso ¢ sabendo que conexdes de primeiro grau sdo
adicionadas a pesquisa antes de conexdes de segundo grau.

Vocé apenas segue a lista e verifica se a pessoa ¢ uma vendedora de mangas.
As conexdes de primeiro grau serdo procuradas antes das de segundo grau,

e, dessa forma, vocé encontrard o vendedor de mangas mais préximo.
Assim, a pesquisa em largura ndo encontra apenas um caminho entre A e B,
ela encontra o caminho mais curto.

Repare que isso s6 funciona se vocé procurar as pessoas na mesma ordem
em que elas foram adicionadas. Ou seja, se Claire foi adicionada a lista antes
de Anuj, deve-se pesquisar Claire antes de Anuj. O que acontece se vocé
pesquisar Anuj antes de Claire, sendo que ambos sao vendedores de
mangas? Bem, Anuj é um contato de segundo grau enquanto Claire é um
contato de primeiro grau, o que fara com que o vendedor de mangas
encontrado nio seja o mais proximo. Portanto é necessdrio pesquisar as
pessoas na ordem em que elas foram adicionadas; para isso existe uma
estrutura de dados especifica: a fila.

Filas

e e

Uma fila em estrutura de dados funciona exatamente como uma fila da vida

real. Suponha que vocé e um amigo estejam em uma fila em uma parada de
onibus. Se vocé esta antes dele na fila, entrara primeiro no 6nibus. As filas
funcionam da mesma maneira, tendo funcionamento similar ao das pilhas.
Por isso ndo é possivel acessar elementos aleatérios em uma fila. Em vez
disso, apenas duas operagdes sdo possiveis: enqueue (enfileirar) e dequeue
(desenfileirar).

. _
S A

ENQUEUE DEQUEUE
ADICTONA UM RETIRA UM
ITEM NA LISTA ITEM DA LISTA

Se vocé enfileirar dois itens na lista, o primeiro item adicionado sera
desenfileirado antes do segundo item. Isso pode ser utilizado em sua lista de
pesquisas! Dessa forma, pessoas que foram adicionadas primeiro na lista
serdo desenfileiradas e verificadas primeiro.

A fila é uma estrutura de dados FIFO (acronimo para First In, First Out, que
em portugués significa Primeiro a Entrar, Primeiro a Sair). Ja a pilha é uma
estrutura de dados LIFO (Last In, First Out, que em portugués significa
Ultimo a Entrar, Primeiro a Sair).

11]2]3]4]

JTIT 3353 3]

©

FIFO LIFO
(PRIMEIRO A ENTRAR, (ULTIMO A ENTRAR,
PRIMEIRO A SAIR) PRIMEIRO A SAIR)

Agora que vocé sabe como uma fila funciona, vamos implementar a
pesquisa em largura!

EXERCICIOS

Execute o algoritmo de pesquisa em largura em cada um desses grafos para
encontrar a solugao.

6.1 Encontre o menor caminho do inicio ao fim.

FIm

Infeto

6.2 Encontre o menor caminho de “jato” até “gato”.

GRATO

‘ m
Implementando o grafo

Primeiro, vocé deve implementar o grafo em c6digo. Um grafo consiste de
diversos vértices.

Cada vértice é conectado aos vértices vizinhos. Como expressar uma relagdo
do tipo“vocé -> bob’? Felizmente, vocé conhece uma estrutura de dados que
lhe permite expressar relagdes: uma tabela hash!

nfcIo

CLAE

BOB

_ AL\ CE
Lembre-se de que uma tabela hash lhe permite mapear uma chave a um
valor. Nesse caso vocé deseja mapear um vértice a todos os seus vizinhos.

L2\
" . | Auce :
*| VOCE | BoB
’ CLAE |/
- — = _:j

Em Python, isso ficaria assim:

grafo = {}

grafo["voce"] = ["alice", "bob", "claire"]
Note que “vocé” é mapeado para um vetor. Logo grafo["voce"] lhe dara
um vetor de todos os vizinhos de “voce”.

Um grafo é apenas um monte de vértices e arestas, portanto isso é tudo que
vocé precisa para ter um grafo em Python. E se tivermos um grafo maior?

ANUT THoM

PEGGY

Em Python, ficaria assim:

grafo = {}
grafo["voce"] = ["alice", "bob", "claire"]
grafo["bob"] = ["anuj", "peggy"]
grafo["alice"] = ["peggy"]
grafo["claire"] = ["thom", "jonny"]
grafo["anuj"] = []
grafo["peggy"] = []
grafo["thom"] = []
grafo["jonny"] = []

Pergunta rapida: A ordem que adiciona os pares chave/valor faz diferenca?

Existe diferenca ao escrever

grafo["claire"]

= [llthomll’ lljonnyll]
grafo["anuj"] = []

em vez de
grafo["anuj"] = []
grafo["claire"] = ["thom", "jonny"]
Lembre-se dos capitulos anteriores! Resposta: Nao faz diferenca, pois as

tabelas hash ndo sao ordenadas. Portanto ndo importa em que ordem vocé
adiciona os pares chave/valor.

Anuj, Peggy, Thom e Jonny ndo tém vizinhos. Eles tém setas apontadas para
eles, mas nenhuma seta partindo deles para outros. Isso se chama digrafo
(ou grafo direcionado), onde a relagdo acontece apenas em um sentido.
Logo, Anuj é vizinho de Bob, mas Bob nao ¢ vizinho de Anuj. Um grafo nao
direcionado (ou simplesmente grafo) nao contém setas, e ambos os vértices
sao vizinhos um do outro. Como exemplo, podemos dizer que ambos os
grafos mostrados a seguir sao iguais.

e &

GRAFO DIRECIONADO GRAFO NAO-DIRECIONADO

Implementando o algoritmo

Relembrando, a implementacao funcionara da seguinte forma:

4 cRIE UMA FILA CONTENDO

LAuc.El BoB 1 c:_m.e.je_’ TODAS A5 PESSOAS QUE
T T 3 DEVEM SER VERIFICADAS

J

% 2 RETIRE UMA PESSOA
e = |6e8 ‘e:.-..MP-E'l bA FILA

; ;A 3 . CONFIRA SE ESTA PESS0A
| l ALICE 3 PESSOA E UM VENDEDOR
; y DE MANCIAS

b [= - o ?’
?ﬂfﬂﬂn b€ m‘“i

SIm NAO

4 b. Adicione todos 05
4‘1& Paerhe vizinhos déla va Fila

Y
EEE

5 . REPTTA!

6 .cAs0 A FILA ESTETA VAZIA,
NBO EXISTEM VENDEDORES
DE MANGA EM SUA REDE

Nota

Usei os termos enqueue e dequeue ao me referir a atualizacdo de filas. Porém vocé também
encontrara os termos push e pop; push é quase sempre a mesma coisa que enqueue € pop €

guase sempre a mesma coisa que dequeue.

Comece criando uma lista. Em Python, usa-se a fun¢do deque (double-
ended queue, que em portugués significa fila com dois finais) para isso:

from collections import deque
fila_de_pesquisa = deque() O

fila_de_pesquisa += grafo["voce"] &
O Cria uma nova lista.
® Adiciona todos os seus vizinhos para a lista de pesquisa.

i i

0 Auice
U 606

[CARE
L

Lembre-se, grafo["voce"] fornecerd uma lista de todos os seus vizinhos,
como ["alice", "bob", "claire"].

Todos eles sao adicionados a fila de pesquisa.

Vamos ver o resto:

while fila_de pesquisa: @
pessoa = fila_de pesquisa.popleft() ©
if pessoa_e_vendedor(pessoa): ©
print pessoa + " é um vendedor de manga!" ®
return True
else:
fila_de_pesquisa += grafo[pessoa] ®

return False @

O Enquanto a fila nao estiver vazia ...

® ... pega a primeira pessoa da fila.

® Verifica se essa pessoa € uma vendedora de mangas.
® Sim, ela é uma vendedora de mangas.

® Nao, ela nao é uma vendedora de mangas. Adiciona todos os amigos dessa
pessoa a lista.

® Se vocé chegou até aqui, é sinal de que nenhuma pessoa da fila era uma
vendedora de mangas.

Uma udltima observagao: vocé precisara de uma fun¢ao

pessoa_e_vendedor, que lhe diz se essa pessoa é vendedora de mangas.

Aqui temos um exemplo:

def pessoa_e_vendedor(nome):
return nome[-1] == 'm'
Essa fungdo verifica se o nome da pessoa termina com a letra m. Caso
termine, ela ¢ uma vendedora de mangas. Esta ¢ uma maneira um pouco
boba de procurar vendedores, mas é o suficiente para este exemplo. Agora,
vamos ver a pesquisa em largura em acéo.

Fi[aﬂde.hPeSqfui:-a
ATUAL
Fila_ de:_PeSa;-"ﬂ df-q,ueo ek

— — | -
— —

F.La. dg_PeSq'u--_sa —%raFo Mvoce™] S
i
ENQUANTO QUE A [J J|‘~“—;—"":lf<%l

FILA DE PESQUISA
NAD ESTA VAZIA

~ while FiLa_de;_PeSq."iﬂ‘ i.tuca cLAre | mop

_-— e - -
—_— e — — -

A PESSOA l.eﬂ;() N
E A ALTCE =2 -Pc'ﬁoa'F'La JE*P“GEJHQ per m— CLAIRE

—

— o amend —— — —_— — —

NALTCE" NAD TERMINA - if ?CsSoE_C_VEHchW (pcss»ﬁ); i CLaiRe !nou

COM "M', ENTAO ELA o

— e — — —_-_-—_}_,_____—--

NAO E UMA VENDEDORA
fila_de —pesqisa + = grafolpessod] m __

— — -

while Fila_de_pesqpisa limﬁé | 808 | Pecer |
" B e |

—_—
S — — e — e e e e mm mm mm e

pessod= Fi[z,_dg_Pesquis.a,FoFLtﬁ() % EE]

— e e [m—— s e s

—

iF p:ssua_t.uehdcdor{Pess 03)" Pecsy
3

— — e S e e e -

coe

—— p— o — — M
— — — — —_—

Fila_de ..Pes.:buif.a + = qvaFo[pcs s03) m_ THoM s@

N

E assim por diante, o algoritmo continuara até que
« um vendedor de mangas seja encontrado, ou
« a lista fique vazia (nesse caso, ndo ha vendedores de mangas).

Alice e Bob tém uma amiga em comum: Peggy. Logo, Peggy sera adicionada
a lista duas vezes: uma quando vocé adicionar os amigos de Alice e

novamente quando os amigos de Bob forem adicionados. Desta forma
existirdo duas Peggys na sua lista de pesquisa.

e

;_,-{ﬁ—/

OH OH, A PEGGY ESTA
DUAS VEZES NA
FILA DE PESQUISA!

Mas vocé so precisar verificar Peggy uma vez para saber se ela ¢ uma
vendedora de mangas ou ndo. Verifica-la duas vezes sera perda de tempo.
Dessa forma, ao verificar uma pessoa, vocé deve marca-la como verificada
para que ela ndo seja pesquisada novamente.

Caso isso ndo seja feito, sua pesquisa podera entrar em um loop infinito.
Suponha que o grafo de vendedores de mangas seja algo assim:

el

No inicio, a lista de pesquisa contém todos os seus vizinhos.

—
IFEG&Y l

Agora vocé verifica Peggy e descobre que ela ndo é uma vendedora de
mangas, entdo vocé adiciona todos os vizinhos dela a lista de pesquisa.

A
[vocé
Agora verifique vocé mesmo. Vocé nao é um vendedor de mangas, entdo
adicione todos os seus vizinhos a lista de pesquisa.

—
IPEGGY '

E assim por diante. Isso sera um loop infinito porque a lista de pesquisa
continuara indo de vocé para a Peggy.

| /’\

<

S &

\1/

Antes de verificar uma pessoa, é importante conferir se ela ainda nao foi
verificada. Para fazer isso, vocé criard uma lista de pessoas que ja foram
verificadas.

O cédigo final para a pesquisa em largura, considerando isso, fica da
seguinte forma:

def pesquisa(nome):
fila_de_pesquisa = deque()
fila_de_pesquisa += grafo[nome]
verificadas = [] ©
while fila_de_pesquisa:
pessoa = fila_de pesquisa.popleft()
if not pessoa in verificadas: ®
if pessoa_e_vendedor(pessoa):
print pessoa + " é um vendedor de manga!"
return True
else:
fila_de_pesquisa += grafo[pessoa]
verificadas.append(pessoa) ©
return False

pesquisa("voce")

O Esse vetor é a forma pela qual vocé mantém o registro das pessoas que ja foram
verificadas.

@ Verifica essa pessoa somente se ela ja nao tiver sido verificada.

® Marca essa pessoa como verificada.

Tente executar este codigo e experimente modificar a fun¢ao

pessoa_e_vendedor para algo com uma finalidade melhor e entao veja se
ela representa o que vocé esperava.

Tempo de execucao

Se vocé procurar um vendedor de mangas em toda a sua rede, cada aresta
(lembre-se de que aresta é a seta ou a conexao entre uma pessoa e outra)
sera analisada. Portanto o tempo de execucdo é, no minimo, O(niimero de
arestas).

Além disso, também serda mantida uma lista com as pessoas ja verificadas.
Adicionar uma pessoa a lista leva um tempo constante: O(1). Fazer isso para
cada pessoa terd tempo de execu¢do O(numero de pessoas) no total. Assim,
a pesquisa em largura tem tempo de execu¢ao O(nuimero de pessoas +
numero de arestas), que é frequentemente escrito como O(V+A) (V para
numero de vértices, A para numero de arestas).

EXERCICIOS

Este é um pequeno grafo da minha rotina matinal.

ACORDAR

ESCOVAR
05 DENTES

TOMAR cngé
DA MANHA

Ele mostra que nao posso tomar café da manha antes de escovar meus
dentes. Entao “tomar café da manha” depende de “escovar os dentes”.

Por outro lado, tomar banho nao depende de escovar os dentes, pois posso
tomar banho antes de escovar os dentes. A partir desse grafo vocé pode fazer
uma lista relacionando a ordem das atividades da minha rotina matinal.

1. Acordar.

2. Tomar banho.

3. Escovar os dentes.

4, Tomar café da manha.

Note que “tomar banho” pode ser movido, logo essa lista também ¢é valida:
1. Acordar.

2. Escovar os dentes.

3. Tomar banho.

4. Tomar café da manha.

6.3 Quanto a estas trés listas, marque se elas sao validas ou invalidas.

A. B, L.

l. TOMAR BANHO

). ACORDAR |. AcoRDAR
2 . TOMAR BANHO 2 .ESCOVAR 05 DENTES 2..ACORDAR
3 .TOMAR CAFE DA ﬁ"-ﬂ-"ll-l-ﬁ 3. TOMAR CAFE DA ﬂﬁﬂNHﬁ 2, ESCOVAR 05 DENTES

4. .ESCOVAR 05 DENTES 4 . TOMAR BANHO 4.TDM#R CAFE DA MANHA

6.4 Aqui temos um grafo maior. Faca uma lista valida para ele.

TROCAR
UE ROUPA

ESCOVAR
05 DENTES

Vocé poderia dizer que essa lista é, de certa forma, ordenada. Se a tarefa A
depende da tarefa B, a tarefa A aparece depois na lista. Isso é chamado de
ordenagado topoldgica, e ¢ uma maneira de criar uma lista ordenada a partir
de um grafo. Imagine que vocé esteja planejando um casamento e tenha um
grafo enorme de tarefas a serem realizadas. Porém vocé ndo sabe nem por
onde comegar. Assim, uma ordenagdo topoldgica do grafo poderia ser feita e,
dessa forma, uma lista de tarefas ja em ordem seria elaborada.

Suponha que vocé tenha uma drvore genealdgica.

) BB e

Esta arvore é um grafo, pois existem vértices (as pessoas) e arestas, e as
arestas apontam para os pais dos vértices. Porém todas as arestas apontam
para baixo, pois ndo faria sentido uma arvore genealdgica ter arestas

apontando para cima! Seu pai ndo pode ser o pai do seu avo!

NAO EXISTEM
FLECHAS APONTANDO
PARA CImA

Isso é chamado de drvore. Uma arvore é um tipo especial de grafo em que
nenhuma aresta jamais aponta de volta.

6.5 Quais desses grafos também sdo arvores?
A B, C.
Recapitulando

o A pesquisa em largura lhe diz se ha um caminho de A para B.

« Se esse caminho existir, a pesquisa em largura lhe dara o caminho
minimo.

« Se vocé tem um problema do tipo “encontre o menor X, tente modelar o
seu problema utilizado grafos e use a pesquisa em largura para resolvé-lo.

« Um digrafo contém setas e as relagdes seguem a direcdo das setas (Rama -
> Adit significa “Rama deve dinheiro a Adit”).

o Grafos ndo direcionados ndo contém setas, e a relacdo acontece nos dois

sentidos (Ross — Rachel significa “Ross namorou Rachel e Rachel
namorou Ross”).

« Filas sdo FIFO (primeiro a entrar, primeiro a sair).
o Pilhas sdo LIFO (ultimo a entrar, primeiro a sair).

« Vocé precisa verificar as pessoas na ordem em que elas foram adicionadas
a lista de pesquisa. Portanto a lista de pesquisa deve ser uma fila; caso
contrario, vocé nao obtera o caminho minimo.

« Cada vez que vocé precisar verificar alguém, procure nao verifica-lo
novamente. Caso contrario, podera acabar em um loop infinito.

7
Algoritmo de Dijkstra

Neste capitulo

« N6s continuaremos a discutir sobre grafos e vocé conhecera grafos

ponderados, que é uma maneira de atribuir pesos em algumas
arestas.

-« Vocé aprendera o algoritmo de Dijkstra, que determina caminho
minimo até X para grafos ponderados.

- Vocé aprendera ciclos em grafos, que sao situagdes nas quais o
algoritmo de Dijkstra nao funciona.

No capitulo anterior vocé aprendeu como chegar do ponto A ao ponto B.

Nao é necessariamente o caminho mais rapido, mas é o caminho mais curto
porque tem o menor numero de segmentos (trés segmentos). No entanto
suponha que vocé adicione um tempo de deslocamento aos segmentos.
Agora é possivel perceber que hd um caminho mais rapido.

2 1!‘n;n

Vocé usou a pesquisa em largura no capitulo anterior, entao sabe que ela
retornara o caminho com o menor nimero de segmentos (o primeiro grafo
mostrado aqui). E se, em vez disso, quiser fazer o caminho mais rapido (o
segundo grafo)? O caminho mais rdpido pode ser encontrado com um
algoritmo diferente, chamado algoritmo de Dijkstra.

Trabalhando com o algoritmo de Dijkstra

Vamos ver como ele funciona com esse grafo.

Cada segmento tem um tempo de deslocamento em minutos. Vocé usara o
algoritmo de Dijkstra para ir do inicio ao fim no menor tempo possivel.

Caso a pesquisa em largura seja executada neste grafo, o algoritmo retornara
o caminho mais curto.

+ MiN

Porém este caminho tem duracdo de sete minutos. Vamos ver se é possivel
encontrar um caminho que leve menos tempo! O algoritmo de Dijkstra tem
quatro etapas:

1. Encontre o vértice mais “barato”. Este é o vértice em que vocé consegue
chegar no menor tempo possivel.

2. Atualize o custo dos vizinhos desse vértice. Explicarei o que quero dizer
com isso em breve.

3. Repita até que vocé tenha feito isso para cada vértice do grafo.

4, Calcule o caminho final.

Passo 1: Encontre o vértice mais barato. Vocé esta parado no ponto inicial,
pensando se deve ir ao vértice A ou ao vértice B. Quanto tempo leva para
alcancar cada um?

Vocé leva seis minutos para chegar ao vértice A e dois minutos para chegar
ao vértice B. O tempo para chegar aos outros vértices vocé ainda
desconhece.

T
K
VBRTICE \epice

fh | Oo
S

Como vocé ainda nao sabe quanto tempo demora para chegar até o final,
considere-o infinito (vocé vera o porqué disso logo). O vértice B é o mais
préximo, pois esta a dois minutos de distancia.

Passo 2: Calcule quanto tempo leva para chegar até todos os vértices
vizinhos de B, seguindo as arestas de B.

, € NECESSARIO % 5v
VERTICE TEMPO :
- 4 APENAS C MIN ’
A &5 PARA CHEGAR
ATE 0 VERTICE
B 2 A AGORA

FIm 7+

-

Ei, vocé acabou de encontrar um caminho mais curto para o vértice A!

Antes, vocé levava seis minutos para chegar até ele.

Porém, caso vocé va pelo vértice B, existe um caminho que demora apenas
cinco minutos!

Quando encontrar um caminho mais curto para um vizinho de B, atualize
seu custo. Neste caso vocé encontrou

e Um caminho mais curto até A (diminuiu de seis minutos para cinco
minutos)

e Um caminho mais curto até o final (diminuiu de infinito para sete
minutos)

Passo 3: Repital

Passo 1 novamente: Encontre o vértice ao qual vocé consegue chegar em
menos tempo. Vocé ja fez isso para o vértice B, entdo o vértice A tem, agora,
menor estimativa de tempo.

VERTICE TEMPO
[A | 5 |«
B 2

FIm + 3

Passo 2 novamente: Atualize os custos para os vizinhos do vértice A.

Uau, agora leva apenas seis minutos para chegar até o final!

Vocé executou o algoritmo de Dijkstra para cada vértice (ndo ¢ necessario
rodar para o vértice final). Até esse ponto, vocé ja sabe que:

 demora dois minutos para chegar ao vértice B.
 demora cinco minutos para chegar ao vértice A.

« demora seis minutos para chegar ao final.

VERTICE TEMPO
A S
R 4

L FIm 6J

Guardarei a ultima etapa, que é o calculo do caminho final, para a préxima
se¢do. Por enquanto, vou apenas mostrar como é o caminho final.

A pesquisa em largura nao teria encontrado esse caminho como o caminho
mais curto porque ele contém trés segmentos, e ha uma maneira de chegar
do inicio ao fim em dois segmentos.

CAMINHO MATS CURTO COM
A BUSCA EmM LARGURA
No capitulo anterior vocé usou a pesquisa em largura para achar o caminho
minimo entre dois pontos. L4, “caminho minimo” significava o caminho
com menor numero de segmentos. Porém no algoritmo de Dijkstra vocé
atribui um peso a cada segmento. Logo, o algoritmo encontra o caminho
com 0 menor peso total.

2 ih..',.

P i
GRAFO PONDERADO GRAFO NAO POMDERADD
(UTILIZE BELLMAN-FORD) (UTILIZE BUSCA EM LARGURA)

Para relembrar, o algoritmo de Dijkstra tem quatro passos:

1. Encontre o vértice mais “barato”. Esse é o vértice em que vocé consegue
chegar no menor tempo possivel.

2. Verifique se ha um caminho mais barato para os vizinhos desse vértice.
Caso exista, atualize os custos deles.

3. Repita até que vocé tenha feito isso para cada vértice do grafo.

4. Calcule o caminho final (abordado na préxima se¢ao!).

Terminologia

Quero mostrar mais alguns exemplos do algoritmo de Dijkstra em agao,
mas, primeiro, deixe-me esclarecer algumas terminologias.

Quando vocé trabalha com o algoritmo de Dijkstra, cada aresta do grafo tem
um numero associado a ela. Eles sao chamados de pesos.

PES05

Um grafo com pesos é chamado de grafo ponderado (também chamado de
grafo valorado). Um grafo sem pesos é chamado de grafo ndo ponderado
(também chamado de grafo ndo valorado).

(A

&)

GRAFO PONDERADO GRAFO NAO PONDERADO

Para calcular o caminho minimo em um grafo nao ponderado, utilize a
pesquisa em largura. Ja para calcular o caminho minimo em um grafo
ponderado utilize o algoritmo de Dijkstra. Além disso, grafos também
podem conter ciclos que se parecem com isso.

(8)

Um cIcLo!

VOCE PODE

COMEGAR EM

(R) € TERMINAR

EM (A) NOVAMENTE. (C)

Ciclos indicam que é possivel comegar em um vértice, viajar ao redor dele e
terminar no mesmo vértice. Por exemplo, suponha que esteja tentando
achar o caminho minimo deste grafo, o qual contém um ciclo.

A
PESO
TotaL: 13

Vocé acabara no vértice A de qualquer forma, mas o ciclo tera mais peso.
Podemos até mesmo seguir o ciclo duas vezes.

PESO &
TOTAL: 2 1 p

Porém, cada vez que vocé o seguir, estara apenas adicionando 8 no peso
total. Logo, seguir o ciclo jamais fornecera o caminho minimo.

Vocé se lembra da nossa conversa sobre grafos direcionados e grafos nao
direcionados do Capitulo 62

E I o—

GRAFO GRAFO NAD
DIRECIONADO DIRECIONADO

Um grafo ndo direcionado indica que dois vértices podem apontar um para
o outro. Ou seja, um grafo nao direcionado é um ciclo!

" cIcLo! |

&—® -a__b

Com um grafo ndo direcionado, cada vértice adiciona um novo ciclo. O
algoritmo de Dijkstra s6 funciona com grafos aciclicos dirigidos (em inglés
Directed Acyclic Graph, DAG).

e,

Adquirindo um piano
Chega de terminologia, vamos analisar outro exemplo! Este ¢ o Rama.
Rama esta tentando trocar um livro de musica por um piano.

“Eu troco este poster pelo seu livro”, diz Alex. “E um podster da minha banda
favorita, Destroyer. Ou entdo darei este LP raro do Rick Astley pelo seu livro
e mais 5 reais.” “Ooh, ouvi dizer que esse LP tem musicas muito boas’, diz
Amy. “Trocarei com vocé meu baixo ou minha bateria pelo pdster ou pelo
LP”

F"‘I

“Eu estava com vontade de aprender baixo!”, exclamou Beethoven. “Ei, troco
meu piano por qualquer uma das coisas da Amy.’

Perfeito! Com um pouco de dinheiro, Rama consegue trocar seu livro de
piano por um piano de verdade. Agora ele sd precisa descobrir como gastar
a menor quantia ao fazer essas trocas. Vamos fazer um grafo do que foi
oferecido.

quq. LP RARO

BAI){D

W
LIVRO 5

POSTER

P'IAND

BﬁTERIﬂ

Neste grafo, os vértices sdo todos os itens que Rama pode trocar. Analisando
a imagem, é possivel observar que ele pode trocar o pdster pelo baixo por R$
30, ou trocar o LP pelo baixo por R$ 15. Como Rama descobrira o caminho
do livro até o piano por meio do qual ele gasta a menor quantia? Este é o
papel do algoritmo de Dijkstra! Lembre-se de que o algoritmo de Dijkstra é
separado em quatro passos. Assim, neste exemplo, vocé executara estes
quatro passos e, ao fim, conseguira calcular o caminho final.

Antes de comegar, vocé precisa de algumas coisas. Primeiro, faga uma tabela
com o custo de cada vértice, registrando o quanto vocé gasta para chegar até

cada um dos vértices.

VERTICE <U5TO

Lp =
[pOSTER 7]
BAIXO O
BATERIA | OO
PIANO oo

NOS ATNDA
NAO ALCANGAMOS
ESTES VERTICES

Vocé continuara atualizando esta tabela conforme o algoritmo for

executado. Para calcular o caminho final, também serd necessdria uma
coluna pai na tabela.

VERTICE PAI

LP LIVRO

POSTER | LIVRO

BAIXO —

BATERIA —
PIANO .

Mostrarei como essa coluna funciona em breve. Agora vamos iniciar o
algoritmo.

Passo 1: Encontre o vértice mais barato. Neste caso, o p()ster ¢ a troca mais
barata, pois tem custo de R$ 0. Existe alguma troca em que Rama possa ficar
com o poster por menos de R$ 0? Leia adiante quando souber a resposta.
Resposta: Nao. Porque o pdster é o vértice mais barato para o qual Rama
consegue ir. Logo, ndo hd outra maneira de tornd-lo mais barato. Vamos
analisar o problema de forma diferente agora. Para isso, suponha que vocé
esteja indo de casa para o trabalho.

PARQUE

ESCOLA

Se pegar o caminho em diregdo a escola, vocé vai demorar dois minutos
para chegar. Ja o caminho em dire¢do ao parque demora seis minutos. Existe

alguma maneira de ir ao parque e acabar na escola em menos de dois
minutos? Nao, isto é impossivel, pois demora mais de dois minutos apenas
para chegar até o parque. Por outro lado, vocé consegue achar um caminho

mais rapido até o parque? Sim.

| ESTE CAMINHO
LEVA & MINUTOS PARQUE

B g

ESTE c.nmIMHﬂ]\ ESCOLA
LEVA APENAS

2 mINYTOS

“n TRABALHO

Esta é a ideia-chave por tras do algoritmo de Dijkstra: Olhe para o vértice
mais barato do seu grdfico: ndo ha uma maneira mais barata de chegar até

ele!

De volta ao exemplo do piano. O poster é a troca mais barata.

Passo 2: Descubra o custo para chegar aos vizinhos do poster.

PAL VERTICE <U5TO
LIVRO Lp 5
LIVRO POSTER &

= Tatv bl 7]

- POSTER ~ | BAIXO | o34 <

" POSTER | BATERTA o 75 - |
—_— PIANOD)

Vocé tem precos para o baixo e para a bateria na tabela. Os valores deles
foram registrados quando vocé passou pelo poster. Logo, o pdster é definido
como o pai desses itens, o que significa que para chegar ao baixo vocé segue

a aresta do pOster, e 0 mesmo acontece com a bateria.

PAT VERTICE _ cUsTO
ko |p | S |
NG5 PARTIMOS LIVRO EZTEL__E_
DE "POSTER" EM POSTER | BAIXO 3P

DIREGAC A UM POSTER | BATERIA | 35
DESTES VERTICES\ |- e

L—_-—' oo

Passo 1 novamente: O LP é o proximo vértice mais barato, pois custa R$ 5.

Passo 2 novamente: Atualize todos os valores dos vizinhos.

PAL VERTICE ¢UsTO

LIvko | Lp 5
LIVRO | POSTER 7s)
" | BAIXO [2 -

£y

> X | BATERTA [39:25°
— | p1ano

©oJ

Ei, vocé atualizou o preco tanto da bateria quanto do baixo! Isso significa
que ¢ mais barato chegar até a bateria e até o baixo seguindo a aresta do LP.
Entdo, coloque o LP como o pai para ambos os instrumentos.

O baixo é o proximo item mais barato, entdo vocé atualiza os seus vizinhos.

LP e PAI VERTICE <ysTO
BAIXO
X LIviRo | LP s]
40 T : .
o . _ LIVRO POSTER
o % LP BAIXO 24
"PIANO LP BATERIA | 25
d 35 | BATERTA| PTANO “4p -
POSTER BATERIA

Ok, vocé finalmente tem um preco para o piano, caso o troque pelo baixo.
Portanto, determine o baixo como pai. Por fim, o tltimo vértice serd a
bateria.

POSTER

PAL

VERTICE <U5TO

LIvRO 1 LP 5

LIvko | POSTER 2 |

Lp BAIXO 2

LP BATERIA 2y
BATERTA| PIANO [> 3 oC N

Rama pode conseguir o piano com um custo ainda menor caso troque-o
pela bateria. Assim, a série de trocas mais barata custard R$ 35.

Agora, vocé deve descobrir o caminho. Até o momento vocé ja sabe quanto
o caminho minimo custa (R$ 35), mas como vocé descobrird o caminho?
Primeiro, olhe para o pai do piano.

—

PAT VERTICE
lvRo | p |
LIVRO POSTER
LP BAIXO
Lp BATERIA
BATERTA | PTANO

O pai do piano ¢ a bateria. Isso nos diz que Rama trocou a bateria pelo piano
e, por isso, deve seguir esta aresta.

Vamos analisar como devemos seguir esta aresta. Sabemos que piano tem

bateria como seu pai.

BAIXO

E bateria tem o LP como pai.

" a5
POSTER BATERIA

Entao Rama trocara o LP pela bateria e obviamente trocara o livro pelo LP.
Seguindo os pais, do final para o inicio, vocé tera o caminho completo.

A s
POSTER # BATERIA

Aqui temos a série de trocas que Rama precisa fazer.

LIVRO LP
LP BATERIA

it > T

BATERIA PIANO

Até este ponto, tenho usado o termo caminho minimo ou caminho mais
curto de forma literal: calculando a distancia entre duas localiza¢des ou duas
pessoas. Este exemplo tem por objetivo mostrar que o caminho minimo nao
precisa ser somente uma disténcia fisica, mas que ele também envolve como
reduzir algo, que nesse caso consistia em reduzir a quantidade de dinheiro
que Rama gastaria. Obrigado, Dijkstra!

Arestas com pesos negativos

P

it
Nesse exemplo de troca, Alex ofereceu trocar o livro por dois itens.

Suponha que Sarah ofereca uma troca entre o LP e o poster, sendo que ela
dard a Rama R$ 7 adicionais. Nao ha nenhum custo para Rama realizar a
troca, pelo contrario, ele ainda recebera R$ 7 de volta. Como vocé mostraria
isso no grafo?

LP

SARAH DARA
S ,/Rtrf 5€ ELE
). TROCAR ©
LT W LP PELO
VRS POSTER DELA

POSTER

A aresta do LP ao podster tem um peso negativo! Rama recebera R$ 7 de
volta se ele fizer essa troca, o que faz com que ele tenha duas maneiras de
conseguir o poster.

LP Lp
S S
|
LIVRO 0 LIVRO 3
sl =
POSTER POSTER
RAMA RECEBE R40 DE VOLTA RAMA RECEBE R&2 DE VOLTA

CA50 ELE SIGA ESTE CAMINHO CAS0 ELE 5I1GA ESTE CAMINHO

Entdo faz sentido realizar a segunda troca, pois Rama recebera R$ 2 de volta
dessa maneira! Agora, se vocé se lembra, Rama pode trocar o pdster pela
bateria. Logo, ha dois caminhos que ele pode escolher.

LP LP

S 3
LIVRO . LIVRO |
W W
%] P2
A -] J5
POSTER 73 BATERIA POSTER BATERIA
CUsTO TOTAL CUST0 TofaLs 7 2
ba5 TRocAs: R435 0A5 TROcAS: R433-
E B

O segundo caminho custa R$ 2 a menos, portanto ele podera escolher esse
caminho, certo? Bem, adivinhe s6, se vocé executar o algoritmo de Dijkstra
nesse grafo, Rama escolhera o caminho errado, pois ele pegara o caminho
mais longo. Vocé ndo pode usar o algoritmo de Dijkstra se vocé tiver arestas
com pesos negativos. Ou seja, os numeros negativos estragam o algoritmo;
para provar isso, vamos ver o que acontece quando executamos o algoritmo
de Dijkstra nesta situagao. Primeiro, crie a tabela de precos.

w | S
poster|

BATERIA| OO

CU5TOS

Em seguida, encontre o vértice com o menor preco e atualize o preco dos
seus vizinhos. Nesse caso o poster ¢ o vértice com o menor prego. Entdo, de
acordo com o algoritmo de Dijkstra, ndo hd uma maneira mais barata de
conseguir o pdster do que pagando R$ 0 (mas vocé sabe que isso estd errado).
De qualquer forma, vamos atualizar o prego dos vizinhos.

w | S
POSTER .éj
~ 1 2

BﬁTERIP._gS- Y-
JE T

CUSTOS

LIVRO

POSTER 35 BATERIA

A bateria custa R$ 35 agora.

Vamos pegar o proximo vértice mais barato que ainda nao foi processado.

..',LP 5 —
$5a

BATERIA| 30

Atualize os precos para os seus vizinhos.

LP ‘ 1
Lp
S | S

LIVRO 2 L?v f_ <«
e -

posTER SO pATERIA |BATERIA 35

Vocé ja processou o vértice do poOster, mas ainda ndo atualizou o prego dele.
Isso é um grande sinal de alerta, pois, uma vez que um vértice é processado,
isso significa que ndo ha uma maneira mais barata de chegar até ele. Porém
vocé acabou de achar um caminho mais barato para o pdster! A bateria nao
tem nenhum vizinho, entdo esse ¢ o final do algoritmo. Aqui estdo os custos
finais.

w | 5

posTerR | =

BATERTA| 3G

CU5TOS FINATS

Assim, o custo para conseguir a bateria é de R$ 35. Porém vocé sabe que
existe um caminho que custa apenas R$ 33, mas o algoritmo de Dijkstra nao
o encontrou. O algoritmo supds que, por vocé estar processando o vértice
do poster, nao havia um caminho mais rapido para chegar até esse vértice.
Essa suposi¢do sé funciona caso nao haja arestas com pesos negativos.
Portanto vocé ndo pode usar arestas com pesos negativos com o algoritmo de
Dijkstra. Se quiser encontrar o caminho minimo em um grafo contendo
arestas com pesos negativos, existe um algoritmo especifico para isso! Ele é
chamado de algoritmo de Bellman-Ford. Este algoritmo esta fora do ambito
desse livro, mas vocé pode encontrar 6timas explicagdes sobre ele na
internet.

Implementacao

Vamos aprender como implementar o algoritmo de Dijkstra em forma de
codigo. Aqui temos o grafo que utilizarei neste exemplo.

Para programar esse exemplo vocé precisara de trés tabelas hash.

FL=A"

Infelo ; ; |
A [FIm] —
A3 A S A | 1nieto
> FIM S _E . B |inicto
FIm | — FIm | co FIm | —
s = J -
GRAFO CUsTOS PAIS

As tabelas hash relativas ao custo e aos pais serdo atualizadas conforme o
algoritmo for executado. Porém, antes disso, é necessario implementar o
grafo, e para isso sera criada uma tabela hash da forma como vimos no
Capitulo 6:

grafo = {}
No capitulo anterior, vocé armazenou todos os vizinhos do vértice em uma
tabela de dispersao desta forma:

grafo["voce"] = ["alice", "bob", "claire"]

Porém agora ¢ necessdrio armazenar os vizinhos e o custo para chegar até
aquele vizinho. Por exemplo, Inicio tem dois vizinhos: A e B.

Como representar os pesos dessas arestas? Por que ndo utilizar apenas outra
tabela hash?

grafo["inicio"] = {}

grafo["inicio"]["a"] = 6

grafo["inicio"]["b"] = 2

| ESTA TABELA HASH POSSUI
MATS TABELAS HASH DENTRO

= |
f il Vo)
A)E
infclo
Rl2

Portanto, grafo["inicio"] é uma tabela hash. Vocé conseguira todos os
vizinhos do Inicio da seguinte forma:

>>> print grafo["inicio"].keys()
[n a n n b n]
b4
Ha uma aresta do Inicio para A e uma aresta do Inicio para B. E como vocé
encontra o peso dessas arestas?

>>> print grafo["inicio"]["a"]
6
>>> print grafo["inicio"]["b"]
2

Vamos adicionar o restante dos vértices e seus vizinhos ao grafo:

grafo["a"] = {}

grafo["a"]["fim"] = 1
grafo["b"] = {}
grafo["b"]["a"] = 3
grafo["b"]["fim"] = 5

grafo["fim"] = {} ©
@ O vértice final ndo tem vizinhos.

O grafo constituido pela tabela hash ¢ algo assim:

=
nicio TODOS
¥ Ble y SA0
TABELAS
A [FIM L HASH
LB LL A
B ks
FIm -
GRAFO

Em seguida vocé precisa de uma tabela hash para armazenar os custos de
cada vértice.

— =\
Al 6
s | 2
FIm DQ__L

CU5TOS

O custo de um vértice é a quantia necessaria para chegar, a partir do Inicio,
no vértice em questao. Vocé sabe que sao necessarios dois minutos para
partir do Inicio e chegar ao vértice B. Além disso, sabe também que sdo
necessarios seis minutos para chegar ao vértice A (embora possa existir um
caminho que leve menos tempo). Entretanto vocé nao sabe o tempo
necessario para chegar até o final. Sendo assim, este tempo ¢é considerado
infinito. Mas sera que é possivel representar infinito em Python? Sim, é
possivel:

infinito = float("inf")
Aqui esta o cddigo para criar a tabela de custos:

infinito = float("inf")

custos = {}
custos["a"]
custos["b"]
custos["fim"] = infinito

6
2

Vocé também precisara de outra tabela hash para os pais:

N Iu£;;;1

B | infelo

Fim -

y
SR 4

o

PAIS

Este é o codigo para criagao da tabela hash para os pais:

paits = {}
pais["a"] = "inicio"
pais["b"] = "inicio"

pais["fim"] = None
Por fim é necessario um array para manter registro de todos os vértices
processados, pois eles ndo precisam ser processados mais de uma vez:
processados = []
Esta é toda a configuragdo necessaria. Agora vamos olhar o algoritmo.

ENQUANTO HOUVER GRAFO05
A SEREM PROCES5ADOS

2

PEGUE O VERTICE
QUE ESTA MATS
PROXIMO DO Infcio

. 2

\ ATUALIZE 05 CU5STOS

PARA 05 SEUS VIZINHOS

SE QUALQUER UM DOS cUSTOS
005 VIZINHOS FOR ATUALIZADO,
ATUALIZE TAMBEM O PAI

MARQUE © VERTICE
COMO PROCESSADO

Primeiro, mostrarei o codigo e, depois, o comentarei. Vocé pode conferir o
cddigo abaixo:

nodo = ache_no_custo_mais_baixo(custos) @
while nodo is not None: &
custo = custos[nodo]
vizinhos = grafo[nodo]
for n in vizinhos.keys(): ®
novo_custo = custo + vizinhos[n]
if custos[n] > novo_custo: @
custos[n] = novo_custo ®
pais[n] = nodo O
processados.append(nodo) @
nodo = ache _no_custo _mais_baixo(custos) ®

O Encontra o custo mais baixo que ainda nao foi processado.

® Caso todos os vértices tenham sido processados, esse laco while sera finalizado.
® Percorre todos os vizinhos desse vértice.

® Caso seja mais barato chegar a um vizinho a partir desse vértice...

® ... atualiza o custo dele.

@ Esse vértice se torna o novo pai para o vizinho.

@ Marca o vértice como processado.

® Encontra o préoximo vértice a ser processado e o algoritmo é repetido.

Esse ¢ o algoritmo de Dijkstra em Python! Mostrarei o c6digo para a fungdo
posteriormente. Agora, vamos ver o cédigo do algoritmo
ache_no_custo_mais_baixo em acao.

Encontre o vértice com o menor custo.

|

A S
2 | =«
(ﬂ hac‘ﬂl = Ecliﬂe.nu&o,wétﬁ-mﬂis.lbaixﬂ (Cusios) —} e =
0 VERTICE (NODO) | FIm |
£ o "p" CUSTOS
Pegue o custo e os vizinhos desse vértice.
- cudlo = cudtos (hodo]
0 CUSTOE 2
. Ale
vizinhos = carafo [wodo] [ictofo+3
r\ A [FIml1
= A3
_ VIZINHOS —> | B . 5] €
E UMA TABELA A 3
HASH: [FIm | —
FIm S l
GRAFO

Percorra todos os vizinhos.

fol" n in vizinhos, kéj&[) Ausidic wmkeﬁa‘..
T R i

nE A" UMA LISTA
DE VERTICES: | A | FIm \

Cada vértice tem um custo, sendo o custo o tempo necessario para chegar
até esse vértice partindo do inicio. Aqui, vocé esta calculando o tempo
necessario para chegar até o ponto A se vocé partir do Inicio e seguir o
caminho Inicio > vértice B > vértice A, em vez de Inicio > vértice A.

+ vizin\Has]

= CuSJ(.G
huvu_c.uf:tﬁ \ novo_cuslo 243

A
cUsTo DE "M (OU SETA, 2) DISTANCIA DE B ATE A: 3 = 5

Comparando os custos.

‘{ c,us'tgs“_mj > noyo _,C.Us-tu

N
Alo CUSTO ANTIGO PRVE Stoll oF
B|2! parancéoc s g
ATRAVES DE B:

CUSTOS

A |F5| «
.:,ugtgg.[mj = Woyo_Cu Str.m B 2_
& 7
(4 AT Y FIm | OO
CUsTOS

O caminho novo vai pelo vértice B, entdo considere B como o novo pai.

NSRS &
Pai‘:‘: n]=hodo R [|infero
r 3
(tﬁﬂ “6” FIﬂ\ -y
T pATs

Vocé esta de volta ao topo do loop. O préximo vizinho do for ¢é o vértice
final.

{or n in vizinhns,bgr,t):
F Sy

We [A [eim
“EIm

Qual o tempo necessario para chegar ao final, caso vocé va pelo vértice B?

hDVD-GUEEtG = Custc =+ vizinhas Ehj

v R 215
2 DIﬁT&P‘JCIA DE = F
B ATE FIm: ©

O tempo necessario é sete minutos, sendo que o custo anterior era de
infinitos minutos e sete minutos é menor do que infinito.

if costos " D> hovo_custo :
« \
FIm| QO NAO saRfAmos :l—L

0 cUSTO PARA
<U5T05 FIM ANTES

Agora, considere o novo custo e o novo pai para o vértice final.

AlS
nustas[h] _hovo_cudlo | B | 2
e1nt ; FIm |57 <
CUsTOS

R |infcto

Fais[h] 2 hodo b
/N FIm [TR | «—

“FI Mﬂ s B!r |
PAIS

Vocé atualizou todos os custos para todos os vizinhos do vértice B; marque-
o como processado e continue.

onc.esszéos . Bf?t?_hd (n aclo) VERTICES

/' PROCESSADOS:
B
Encontre o proximo vértice a ser processado.
5 e ...{ﬁ.,ﬂ
ﬁﬁe&ﬁﬁw S
5 BARFT I
Al ~| A 5 [
hodo = ac.'he_m&u,c.us'ta.mais,baixa(::us’tns) f—==1

) JA mcesﬁnng;r

¢ At * FIM ?’ J
CUSTOS

Pegue os custos e os vizinhos do vértice A.

| Cug‘tﬂ,— Custns[ﬂac:\f!!]

57‘

vizi n'hns = C“lfaﬁ’c tnacif:ﬂ

i

O vértice A sO tem um vizinho: o vértice final.

.for n in vizin‘-nos.kegao:
CCET Z L’_\’_")
) (7w]

Atualmente o menor tempo necessario para alcangar o vértice final é sete
minutos. Quanto tempo levaria para chegar la se vocé fosse pelo vértice A?

hwoﬁuét“ codto + vizinhos{u) ., 1
A v =16

CUSTO PARA CHEGAR DISTANCIA DE
ATE A A PARTIR Do Infelo: & A ATE FIm: 1

]f cuétus[:n] }hnvo_c.usto;
N/

‘ ok 2 &
CUsSTO ANTIGO CUSTO SE
FIm PARA CHEGAR SEGUIRMOS
. ATE O FIm: 7 ATRAVES DE A: 6
CUsToS
Infel

E mais rapido chegar ao vértice final pelo vértice A! Vamos atualizar o custo
e o pai.

—
Bl
2
wstas{u]: h“UD-Gusto B s
J 7 FIim |G- €
“PIm? & o 2
CUsToS
—
A B
ins[n] s 'nc.clg i 1nfeto
2 U ?: FIm :—\ng- Q—-
cepm’ A :
PAIS

Uma vez que vocé processou todos os vértices, o algoritmo ¢ finalizado.
Espero que o passo a passo tenha lhe ajudado a entender o algoritmo um
pouco melhor. Encontrar o vértice de custo minimo é uma tarefa simples

utilizando a func¢do ache_no_custo_mais_baixo. O codigo desta funcao

pode ser visto a seguir.

def ache no_custo_mais_baixo(custos):
custo_mais_baixo = float("inf")
nodo_custo_mais_baixo = None
for nodo in custos: @
custo = custos[nodo]
if custo<custo_mais_baixo and nodo not in processados: ©
custo_mais_baixo = custo ©
nodo_custo_mais_baixo = nodo
return nodo_custo_mais_baixo

© Va por cada vértice.
® Se for o vértice de menor custo até o momento e ainda nao tiver sido processado

® ... atribua como o novo vértice de menor custo.

EXERCICIO

7.1 Em cada um desses grafos, qual o peso do caminho minimo do inicio ao
fim?

1nfcto

Recapitulando

o A pesquisa em largura é usada para calcular o caminho minimo para um
grafo ndo ponderado.

« O algoritmo de Dijkstra é usado para calcular o caminho minimo para
um grafo ponderado.

o O algoritmo de Dijkstra funciona quando todos os pesos sdo positivos.

« Se o seu grafo tiver pesos negativos, use o algoritmo de Bellman-Ford.

8

Algoritmos gulosos

Neste capitulo

« Vocé aprendera como lidar com o impossivel: problemas que nao
tém um algoritmo de solucao rapida (problemas NP-completo).
- Vocé aprendera como identificar esses problemas ao se deparar

com eles, de forma que nao perca tempo tentando achar um
algoritmo rapido para soluciona-los.

- Vocé conhecera os algoritmos de aproximacgao, que podem ser

usados para encontrar, de maneira rapida, uma solucao aproximada
para um problema NP-completo.

- Vocé conhecera a estratégia gulosa, uma estratégia muito simples
para resolver problemas.

O problema do cronograma da sala de aula

Suponha que vocé tenha uma sala de aula e queira reservar o maximo de
aulas possivel nela. Assim, recebe-se uma lista das aulas.

AuLA Infcio FIm

aRTes | @AM |10 AM
GLEs | . 30am{ | O30,
matemdTIcA |O AM | 11 AM
e 110.30]11:30m
mistch [411 am | 12¢em

Vocé ndo pode reservar fodas essas aulas na sala porque os horarios de
algumas delas coincidem.

9 q:30 1o 10:30 11 11:30 12

|) |) |) |
ARTES

Ko s D

TNGLES
== - = =]

MATEMATICA

prm — = -]
cc
. e — ")
mUsIcA

Soa como um problema dificil, nao? Na realidade, o algoritmo ¢é tao simples

que pode surpreender. Aqui temos o funcionamento dele:

1. Pegue a aula que termina mais cedo. Esta é a primeira aula que vocé
colocara nessa sala.

2. Agora vocé precisa pegar uma aula que comece depois da primeira aula.
De novo, pegue a aula que termine mais cedo. Esta é a segunda aula que
vocé colocara

Continue fazendo isso e no final vocé tera a sua resposta! Vamos testar:
Artes termina mais cedo, as 10h00, entao esta € a aula escolhida.

R1Es | Jam | 10am |
metés | 4:30am | 10720k
matendtical {0am 11#!41*
ce | 10:30m|11:30u
wistch | 4 lam |12 pm |

Agora vocé precisa da proxima aula, que comega depois das 10h00 e termina
mais cedo que as demais.

e Gam | 10 v
waiks |G 3oam | 10:0ad K
wtendTichl {0am | 11am |V
« 1 10:30m(11:30u

"SI | 1 {am |12 pM

Inglés nao pode ser escolhido porque tem conflito com Artes, mas a aula de
Matematica encaixa.

Por fim, Ciéncias da Computacao tem conflito com Matematica, mas a aula
de Musica encaixa.

T

\ wolEs | 4.30am 10: 20k
—

e [10:30a4]11: 30
wisteh | 4 4 am lleN v o

X A K N

Entdo, estas sao as trés aulas que vocé colocara nessa sala de aula.

.:? 1:30 1? 10:30 1}1 11:3’0 1;2

ARTES MATEMATICA mUsIch
o S | e R A S e i

Muitas pessoas me dizem que esse algoritmo parece ser facil. Mas ele é 6bvio
demais, logo, deve estar errado. No entanto essa ¢ a beleza dos algoritmos
gulosos (também chamados de algoritmos gananciosos): eles sdo faceis! Um
algoritmo guloso ¢ simples: a cada etapa, deve-se escolher o movimento
ideal. Nesse caso, cada vez que vocé escolhe uma aula, deve escolher a que
acaba mais cedo. Em termos técnicos: a cada etapa, escolhe-se a solugdo
ideal, e no fim vocé tem uma solu¢ao global ideal. Acredite ou nao, esse
algoritmo simples acha a solu¢ao ideal para esse problema!

Obviamente os algoritmos gulosos nem sempre funcionam, mas eles sdo tao
simples de escrever! Vamos olhar outro exemplo.

O problema da mochila

Suponha que vocé seja um ladrao ganancioso e esteja em uma loja com sua
mochila. Na loja existem diversos itens que vocé pode roubar. Porém vocé so
pode levar aquilo que caiba na sua mochila, que s6 suporta 16 quilos.

Vocé esta tentando maximizar o valor dos itens que colocara na sua
mochila. Para isso, que algoritmo vocé usa?

1. Pegue o item mais caro que caiba na sua mochila.

2. Pegue o proximo item mais caro que caiba na sua mochila, e assim por
diante.

Dessa vez, o algoritmo nao funciona! Por exemplo, suponha que existam
trés itens que vocé possa roubar.

-

RADIO NOTEBOOK
RJJ',-IOOO R{-‘ZOGO
1ZKG MG

Sua mochila suporta 16 quilos. O aparelho de som é o item mais caro, entdo
vocé pode rouba-lo. Mas agora nao ha espago para mais nada.

——\ 1 2 k&
5 DESPERDICADOS
16 K& DE
CAPACIDADE / :
DA MOCHILA 13 K& RADIO
/i

VALOR: R42000

Vocé roubou R$ 3.000 em bens, mas espere um pouco! Caso tivesse pegado
o notebook e o violao, vocé poderia ter R$ 3.500!

3 KG
DESPERDICADOS

9 K&
NOTERCOK

VALOR: R432500

Claramente, a estratégia gulosa ndo oferece a melhor solu¢do aqui, mas
fornece um valor bem préximo. No préximo capitulo explicarei como

calcular a solu¢do correta, mas se vocé é um ladrao em um shopping, ndo se
importa com a melhor solu¢do. “Muito bom” é bom o suficiente.

Moral da histéria para este exemplo: as vezes, o melhor ¢ inimigo do bom.
Em alguns casos, tudo o que vocé precisa ¢ de um algoritmo que resolva o
problema de uma maneira muito boa. E € ai que os algoritmos gulosos
entram, pois eles sao simples de escrever e normalmente chegam bem perto
da solucao perfeita.

EXERCICIOS

8.1 Vocé trabalha para uma empresa de mobilias e tem de enviar os méveis
para todo o pais. E necessdrio encher seu caminhao com caixas, e todas as
caixas sdo de tamanhos diferentes. Vocé esta tentando maximizar o
espago que consegue usar em cada caminhdo. Como escolheria as caixas
para maximizar o espaco? Proponha uma solugdo gulosa. Ela lhe dara a
solucao ideal?

8.2 Vocé esta viajando para a Europa e tem sete dias para visitar o maior
numero de lugares. Para cada lugar vocé atribui um valor (o quanto
deseja ver) e estima quanto tempo demora. Como maximizar o total de
pontos (passar por todos os lugares que realmente quer ver) durante sua
estadia? Proponha uma solugdo gulosa. Ela lhe dara a solugdo ideal?

Vamos analisar um altimo exemplo. Este ¢ um exemplo em que algoritmos
gulosos sdo absolutamente necessarios.

O problema da cobertura de conjuntos

Suponha que vocé esteja comecando um programa de radio e queira atingir
ouvintes em todos os cinquenta estados americanos. E necessario decidir em
quais estacdes transmitir para atingir todos os ouvintes. Porém transmitir
em diferentes estacoes tem um custo, e vocé esta tentando minimizar o
numero de estacdes nas quais vocé transmite para minimizar o custo. Temos
uma lista de estagdes.

gsTAGAO DISPONTVEL
DE RADIO EM

kum 1O,NV,UT

kools [WA, 1D,MT

ed

A

KTRES OR, NV,cA

kauaTRo | NV, UT

e —

keINco ChA, AZ

]

_ete...

Cada estagao abrange uma regiao e existe uma sobreposicao.

Como descobrir o menor conjunto de estagdes nas quais vocé pode
transmitir e abranger os cinquenta estados? Soa facil, nao? Acontece que é
extremamente dificil. Aqui estd uma solugao:

1. Liste cada subconjunto possivel de estagdes. Isso é chamado de conjunto
de partes (também conhecido como conjunto de poténcia). Neste caso,
existem 2/\n possiveis conjuntos.

CONTUNTOH] ... CONTUNTOHS -.. CONTUNTOHTO0

KU "rCEﬁ
<\
& ¥
MYy, -
KeIneo Imﬂﬂ
_ete... selies

2. Entre eles, escolha o conjunto com o menor nimero de estagdes que
abranja todos os cinquenta estados.

O problema neste caso é que o tempo para calcular cada possivel
subconjunto de estagdes ¢ muito longo, uma vez que o tempo de execugao é
O(2/n), pois existem 2/ n subconjuntos. Seria possivel calcular se vocé
tivesse um grupo pequeno de cinco a dez estagdes, mas, como em todos os
exemplos aqui, pense o que aconteceria se vocé tivesse muitos itens. O
tempo com um maior numero de estagdes sera longo demais. Para
exemplificar, suponha que vocé consiga calcular dez subconjuntos por
segundo.

Nao existe um algoritmo que resolva isso rdpido o suficiente! O que vocé pode
fazer?

NMERO DE TEMPO

ESTAGOES NECESSARIO
5 3.2 seq
19 192 4 s_q
32 13.6 avos
198 4 % 1.3 Zunos

Algoritmos de aproximacao

Algoritmos gulosos ao resgate! Aqui temos um algoritmo guloso que chega
bem perto da solugao:

1. Pegue a estacdo que abranja o maior numero de estados que ainda nado
foram cobertos. Tudo bem se a estagdo abranger alguns estados que ja

foram cobertos.
2. Repita isso até que todos os estados tenham sido cobertos.

Isto se chama algoritmo de aproximagdo. Quando é necessario muito tempo
para calcular a solugdo exata, um algoritmo de aproximacao ¢ uma boa ideia
e funciona. Os algoritmos de aproximacao sdo avaliados

e por sua rapidez;
« pela capacidade de chegar a solucao ideal.

Os algoritmos gulosos sdo uma boa escolha porque eles sao de facil
compreensao e sua simplicidade também indica que geralmente eles sao de
rapida execugdo. Nesse caso, o algoritmo guloso tem tempo de execugdo
O(n~2), em que n é o numero de esta¢des de radio.

Vamos ver como ¢ esse problema em cédigo.

Cdodigo para o exemplo

Para esse exemplo, usarei um subconjunto de estados e estagdes para
simplificar.

Primeiro, faca uma lista dos estados que deseja abranger:

estados_abranger = set(["mt", "wa", "or", "id", "nv", "ut","ca",
"az"]) ©

@ Vocé passa um array como entrada e ele é convertido em um conjunto.

Usel um conjunto para isso, pois um conjunto ¢ como uma lista, com

excecdo do fato de que cada item sé pode aparecer uma vez. Conjuntos ndo

podem ter elementos duplicados. Por exemplo, suponha que vocé tivesse esta

lista:

>>> arr = [1, 2, 2, 3, 3, 3]

E a tivesse convertido para um conjunto:

>>> set(arr)
set([1, 2, 3])

Os numeros 1, 2 e 3 aparecerdo apenas uma vez no conjunto.

[1,2,2,3,3,3] —» o — (1,2,

CONTUNTO
CONTUNTO

Vocé também precisa da lista de estagdes que podem ser escolhidas.
Eescolhi usar uma tabela hash para isso:

estacoes = {}

estacoes["kum"] = set(["id", "nv", "ut"])
estacoes["kdois"] = set(["wa", "id", "mt"])
estacoes["ktres"] = set(["or", "nv", "ca"])
estacoes["kquatro"] = set(["nv", "ut"])
estacoes["kcinco"] = set(["ca", "az"])

Em portugués, vamos chamar essas estagdes de kum, kdois, ktres, e assim
por diante.

As chaves sdo os nomes das estacdes, e os valores sao os estados que elas
abrangem. Entdo, neste exemplo, a estagdo kum abrange Idaho (id), Nevada
(nv) e Utah (ut). Todos os valores também sao conjuntos, pois fazer com que
tudo seja um conjunto tornara sua vida mais facil, como vera em breve.

Finalmente, vocé precisa de algo para armazenar o conjunto final de
estagoes. Para isso vocé usara:

estacoes_final = set()

Calculando a resposta

Agora, vocé deve calcular as estagdes que utilizard. Dé uma olhada na
imagem a seguir e veja se consegue prever qual estagdo deve ser utilizada.

Pode existir mais de uma opg¢ao correta, sendo que vocé deve observar cada
estacdo e escolher uma que cubra o maior nimero de estados nao cobertos.
Chamarei isso de melhor_estacao:

melhor_estacao = None
estados_cobertos = set()
for estacao, estados_por_estacao in estacoes.items():

estados_cobertos é um conjunto de todos os estados que essa esta¢ao

abrange que ainda nao foram cobertos. O loop for lhe permite percorrer
todas as estagdes para ver qual é a melhor estagdo. Vamos olhar o conteudo

do loop for:

cobertos = estados_abranger & estados_por_estacao @
if len(cobertos) > len(estados_cobertos):
melhor_estacao = estacao
estados_cobertos = cobertos

@ Nova sintaxe! Isso é chamado de interseccao.
Tem uma linha engragada aqui:
cobertos = estados_abranger & estados_por_estacao

O que estd acontecendo?

Conjuntos

Suponha que vocé tenha um conjunto de frutas e também tenha um
conjunto de vegetais.

Quando vocé tem dois conjuntos, é possivel fazer algumas coisas legais com
eles.

BETERRABAS CENOURAS

ABACATE
TOMATE BANANA

FRUTAS | VEGETAIS

Vou exemplificar algumas coisas que vocé pode fazer com conjuntos.

coIsAs aUE SAD cOT5A5 QUE SAO
FRUTAS Ol VEGETALS FRUTAS E VEGETAIS

ABACATE
ABACATE
BETERRABA CENOURAS BANANA
TE BANANA

———

UNTAO INTERSECCAD

cOISA5 QUE SAO FRUTAS, MAS NAD SAD VEGETATS

BETERRABRA —
= CEMNOURAS
TOMATE

DIFERENGA
« Uma unido significa “combine os dois conjuntos”.

« Uma intersec¢ao significa “encontre os itens que aparecem nos dois
conjuntos” (nesse caso, apenas o tomate).

« Uma diferenca significa “subtraia os itens de um conjunto dos itens do
outro conjunto”.

Por exemplo:

>>> frutas = set(["abacate", "tomate", "banana"])
>>> vegetails = set(["beterraba", "cenoura", "tomate"])

>>> frutas | vegetais @

set(["abacate", "beterraba", "cenoura", "tomate", "banana"])
>>> frutas & vegetais ©

set(["tomate"])

>>> frutas - vegetais ®

set(["abacate", "banana"])

>>> vegetails - frutas @

@ Isso é uma uniado.

® Isso é uma intersecgao.

® Isso é uma diferenca.

® O que vocé acha que isso fara?

Relembrando:

« Conjuntos sao como listas, exceto pelo fato de ndo poderem ter elementos
repetidos.

« Vocé pode fazer algumas operagdes interessantes com conjuntos como
unido, interseccao e diferenca.
De volta ao cédigo

Vamos voltar ao exemplo original.

Isto é uma intersecc¢ao:

cobertos = estados_abranger & estados_por_estacao

cobertos é um conjunto de estados que eram tanto estados_abranger

quanto estados_por_estacao. Entdo cobertos é o conjunto de estados
nao cobertos que essa estacdo abrange! Em seguida, verifique se essa esta¢do

abrange mais estados que a atual melhor_estacao:

if len(cobertos) > len(estados_cobertos):
melhor_estacao = estacao
estados_cobertos = cobertos

Caso ela abranja, essa estacdo é a nova melhor_estacao. Finalmente, depois
que o loop for acabar, adicione melhor_estacao a lista final de estagdes:

estacoes_finais.add(melhor_estacao)

Vocé também precisard atualizar estados_abranger, pois esta estagdo
abrange alguns estados, e esses estados nao mais precisam de estagdes que os
abranjam, ou seja, ndo sdo mais necessarios para o algoritmo:

estados_abranger -= estados_cobertos

Assim, vocé fica em um loop até que estados_abranger esteja vazio. Aqui
esta o cddigo completo para o loop:

while estados_abranger:

melhor_estacao = None

estados_cobertos = set()

for estacao, estados in estacoes.items():
cobertos = estados_abranger & estados
if len(cobertos) > len(estados_cobertos):
melhor_estacao = estacao
estados_cobertos = cobertos

estados_abranger -= estados_cobertos
estacoes_finais.add(melhor_estacao)

Por fim, vocé pode imprimir estacoes_finats, e devera ver isto:

>>> print estacoes_finais

set(['ktwo', 'kthree', 'kone', 'kfive'])
E isso que vocé esperava? Em vez das estacdes 1, 2, 3 e 5, as estagdes 2, 3, 4 e
5 poderiam ter sido escolhidas. Agora, vamos comparar o tempo de
execucdo do algoritmo guloso e do algoritmo exato.

Qb O

NUMERO DE ALGORITMO ALGORITMO
ESTAGOES EXATO GULOS0
5 3.2 e 4.3 seq
19 1‘;62-4'5‘53 19 seq
32 13,6 am0s ‘].¢2.4- seq
109 A 18 aomos 16,67 min

EXERCICIOS

Para cada um desses algoritmos, diga se ele é um algoritmo guloso ou nao.
8.3 Quicksort

8.4 Pesquisa em largura

8.5 Algoritmo de Dijkstra

Problemas NP-completos

Para resolver o problema de cobertura de conjuntos vocé deve calcular cada
conjunto possivel.

CONTUNTO$#1 ... CONJUNTOH#S ... CONIJUNTOH#COO

KM 1,"0""1'
&
« ﬁi ﬂ%
feIng, E,
..ete... Lete. . ete.,

Talvez isso o tenha feito se lembrar do problema do caixeiro-viajante do
Capitulo 1. Neste problema, o caixeiro-viajante tem de visitar cinco cidades
diferentes.

BERKELEY

AN -
W
X
DR

Ele esta tentando descobrir a rota mais curta que o levara até as cinco
cidades. Para encontrar a rota mais curta, primeiro devem-se calcular todas
as rotas possiveis.

120 13 133

MILHAS MILHAS MILHAS

Quantas rotas devem-se calcular para cinco cidades?

Caixeiro-viajante, passo a passo

Vamos comegar do basico. Suponha que vocé deseja visitar apenas duas
cidades. Ha duas rotas que vocé pode escolher.

TINICTANDO INICTANDO EM
EM MARTIN: 5A0 FRANCISCO:

@) A

MARIN PARA SAD0 FRANCISCO
5K0 FRANCISCO PARA MARIN

Mesma rota ou rota diferente?

Vocé pode pensar que essa deveria ser a mesma rota. Porque, no fim das contas, SF > Marin
acaba tendo a mesma distancia que Marin > SE certo? Nao necessariamente. Algumas
cidades (como San Francisco) tém muitas ruas de sentido tinico, entdo vocé nio pode voltar
por onde veio. Ou seja, pode ser necessario seguir alguns quildmetros na dire¢do errada para
pegar o acesso a uma rodovia. Logo, duas rotas ndo sdo necessariamente a mesma coisa.

Vocé deve estar pensando “No problema do caixeiro-viajante, existe uma
cidade especifica de onde devo partir?”. Vamos dizer, por exemplo, que sou o
caixeiro-viajante e que vivo em San Francisco e preciso ir para quatro
cidades. San Francisco seria minha cidade de partida.

Porém, as vezes, a cidade de partida nao estd definida. Suponha que vocé
seja o FedEx (servico postal americano) tentando entregar um pacote em
Bay Area (drea da Baia de San Francisco). Esse pacote esta vindo de Chicago
para uma das cinquenta unidades da FedEx em Bay Area. Logo depois, o
pacote sera transportado em um caminhdo que viajara para diferentes locais
fazendo as entregas. Quando vindo de Chicago, para qual unidade em San
Francisco o pacote deve ser enviado? Aqui o local de partida é
desconhecido. Cabe a vocé calcular o caminho ideal e o local de partida para
0 caixeiro-viajante.

O tempo de execucdo das duas versdes é o mesmo, mas o exemplo ficara
mais facil se ndo houver uma cidade de partida, entdo vou usar esta versao.

Duas cidades = duas rotas possiveis.

Trés cidades

Agora suponha que vocé tenha adicionado mais uma cidade. Quantas rotas
existem?

Se vocé comegar em Berkeley, ainda devera visitar mais duas cidades.

INICTIANDO
EM BERKELEY:
BERKELEY
BercELay @
makind PR
sk SF

Ha um total de seis rotas, duas para cada cidade em que pode comecar.

INIcIANDO INICTAMDD

. d:
Em BERKELEY EM MART o

EERKELSY

@ B RcELEY BERRELEY
@ ® i
e RARL pARRIR o
<F
SE
SF

F

TNTCTANDD EM
SAD FRANCISCO:

@ e BERKELEY

rpeit Frusgn e

SF SF

Entdo trés cidades = seis rotas possiveis.

Quatro cidades

Vamos adicionar outra cidade: Fremont. Suponha que vocé inicie l4.

INICTANDO

EM FREMONT:
-.5E A 20 CIDADE -5E A 2¢ CIbADE
E BERKELEY E MARIN
A MARIN
® ® @
AR pERRELEY
6 RRELEY sF NERENEEY ol
sF, b
sF
FREMSHT
Fhanaft FREmaMT Femot

.5E A 2@ CIDADE
£ 5AD FRANCISCO

o ® ©a.

RE PKELEY

BEpRELEY
5F
=F

FREMSNT
FEEtoWT

Ha seis rotas possiveis partindo de Fremont, e olhe s6! Elas se parecem
muito com as seis rotas que vocé calculou anteriormente, quando tinha
apenas trés cidades. Com excecdo de que agora todas as rotas tém uma

cidade adicional: Fremont! Ha um padrao aqui, e para visualiza-lo, suponha

que existam quatro cidades e que vocé possa escolher a cidade de partida.
Vocé escolhe Fremont. Ha trés cidades sobrando, e se ha trés cidades,
existem seis rotas diferentes para trafegar entre elas. Caso vocé inicie em
Fremont, existem seis rotas possiveis. Também pode-se iniciar em uma das
outras cidades.

INTCTANDO INICTIANDO EM

EM MARIN: SAO0 FRANCISCO:
= 6 ROTAS POSSTVETS = ¢ ROTAS POSSIVEIS
INTCTANDO
EM BERKELEY:

= G ROTAS POSSIVELS
Quatro cidades de partida possiveis, com seis rotas possiveis para cada
cidade de partida = 4 * 6 = 24 rotas possiveis.

Percebe o padrao? Cada vez que uma cidade é adicionada, o nimero de
rotas que devem ser calculadas aumenta.

HJMERDC
DE CIDADES
—> L RTA
1 —~

2 —» 2 cIDADES INICIAIS * 1 ROTA PARA cabA INTCIO - 2 ROTAS AD TOTAL

i 2 goTAs = © ROTAS AD TOTAL
3, 3 CIDADES INICIATS X

= A
4 —> & ¢IpADES INICIAIS % 6 ROTAS 2 4 ROTAS AO TOTAL

S 5 5 c10abEs INICIAIS % 24 RoTAs = 120 ROTAS AO TOTAL

Quantas rotas possiveis existem para seis cidades? Se vocé disse 720, esta
certo. Além disso, existem 5.040 rotas para sete cidades e 40.320 para oito
cidades.

Isso é chamado de fun¢do fatorial (Vocé se lembra de ter lido sobre isso no
Capitulo 3?). Entao 5! = 120. Suponha que vocé tenha dez cidades. Quantas
rotas possiveis existem? 10! = 3.628.800. Devem-se calcular perto de 3
milhées de rotas possiveis para dez cidades. Como vocé pode notar, o
numero de rotas possiveis cresce rapidamente! E por isso que é impossivel
calcular a solugdo “correta” para o problema do caixeiro-viajante caso o
numero de cidades seja muito elevado.

Tanto o problema do caixeiro-viajante quanto o problema da cobertura de

conjuntos tém algo em comum: calcula-se cada solugdo possivel e escolhe-se
a menor. Esses dois problemas sao NP-completos.

Aproximando

Qual ¢ uma aproximagdo boa para o algoritmo do caixeiro-viajante? Algo simples que
encontre um caminho curto. Veja se consegue pensar em uma resposta antes de continuar a
leitura.

Como eu faria: aleatoriamente, escolheria uma cidade de partida. Em seguida, toda vez que o
caixeiro-viajante tivesse de escolher a proxima cidade, ele escolheria a cidade néo visitada
mais proxima. Suponha que ele tenha comeg¢ado em Marin.

Distancia total: 71 quilometros. Talvez ndo seja 0 menor caminho, mas, ainda assim, é bem
curto.

Uma breve explicagdo sobre NP-completo: alguns problemas sao
notoriamente dificeis de resolver. O caixeiro-viajante e o problema de
cobertura de conjuntos sao dois exemplos. Diversas pessoas duvidam da
possibilidade de criar um algoritmo que resolva esses problemas de forma
rapida.

Como fa¢o para saber se um problema é NP-completo?

Jonah esta escolhendo jogadores para o seu time de futebol americano de
mentira. Ele tem uma lista de caracteristicas as quais gostaria que seu time
tivesse: um bom quarterback, um bom running back, jogadores que joguem
bem na chuva e que joguem bem sob pressao, entre outras habilidades. Ele
tem uma lista de jogadores, e cada jogador preenche algumas dessas
habilidades.

JOGADOR HABILIDADES

marT FORTE | RB

BOM 50B
RRENDAN MARSHALL. | WR PRESSAO
oM 50

AARON RODGERS | quaRTERBACK / gﬁEﬁi E?o

1

LY

Jonah precisa de um time que preencha todas as caracteristicas desejadas,
mas o tamanho do time é limitado. “Espere um segundo”, Jonah pensa. “Este
¢ um problema de cobertura de conjuntos!”

Jonah pode usar o mesmo algoritmo de aproximagao para criar seu time:

1. Encontre o jogador que preenche o maior nimero de habilidades que
ainda nao foram preenchidas.

2. Repita até que o time tenha preenchido todas as habilidades (ou até que
vocé fique sem espaco no time).

Problemas NP-completos aparecem em todo lugar! E sempre bom saber se o
problema que vocé esta tentando resolver é NP-completo, pois nesta
situacdo vocé pode parar de tentar resolvé-lo perfeitamente e, em vez disso,
resolvé-lo usando um algoritmo de aproximagédo. Porém ¢ dificil perceber se
o problema em que vocé esta trabalhando é um problema NP-completo, pois
normalmente a diferenga entre um problema que é facil de resolver e um
NP-completo é muito pequena. Por exemplo, nos capitulos anteriores falei
muito sobre caminhos minimos. Vocé sabe como calcular o caminho

minimo para chegar do ponto A ao ponto B.

ONTBUS #4 4

ONIBUS #3%L

ONIBUS +#33

Entretanto, se quiser encontrar o caminho minimo que conecta varios
pontos, caira no problema do caixeiro-viajante, que é um problema NP-
completo. A resposta simples é: ndo ha uma maneira facil de dizer se o
problema em que vocé esta trabalhando ¢ NP-completo. Aqui temos alguns

indicativos:
o Seu algoritmo roda rapido para alguns itens, mas fica muito lento com o

aumento de itens.
« “Todas as combinagdes de X” geralmente significam um problema NP-

completo.
o Vocé tem de calcular “cada possivel versao” de X porque nao pode dividir
em subproblemas menores? Talvez seja um problema NP-completo.

« Se 0 seu problema envolve uma sequéncia (como uma sequéncia de
cidades, como o problema do caixeiro-viajante) e ¢ dificil de resolver,

pode ser um NP-completo.
« Se 0 seu problema envolve um conjunto (como um conjunto de estagdes
de radio) e é dificil de resolver, ele pode ser um problema NP-completo.

 Vocé pode reescrever o seu problema como o problema de cobertura
minima de conjuntos ou o problema do caixeiro-viajante? Entdo seu

problema definitivamente ¢ NP-completo.

EXERCICIOS
8.6 Um carteiro deve entregar correspondéncias para vinte casas. Ele deve

encontrar a rota mais curta que passe por todas as vinte casas. Esse é um
problema NP-completo?

8.7 Encontrar o maior clique! em um conjunto de pessoas (um clique, para
este exemplo, é um conjunto de pessoas em que todos se conhecem). Isso
¢ um problema NP-completo?

8.8 Vocé esta fazendo um mapa dos Estados Unidos e precisa colorir estados
adjacentes com cores diferentes. Para isso, deve encontrar o nimero
minimo de cores para que nao existam dois estados adjacentes com a
mesma cor. Isso é um problema NP-completo?

Recapitulando

o Algoritmos gulosos otimizam localmente na esperanca de acabar em uma
otimizacdo global.

o Problemas NP-completo ndo tém uma solu¢do rapida.

« Se vocé estiver tentando resolver um problema NP-completo, o melhor a
fazer é usar um algoritmo de aproximagao.

o Algoritmos gulosos sdo faceis de escrever e tém tempo de execugao baixo,
portanto eles sdo bons algoritmos de aproximacao.

1 N.T.: Na area da matematica da teoria dos grafos, um clique em um grafo nao
orientado é um subconjunto de seus vértices tais que cada dois vértices do
subconjunto sdo conectados por uma aresta.

9

Programacao dinamica

Neste capitulo

- Vocé aprendera programacao dinamica, uma técnica para resolucao
de problemas complexos que se baseia na divisao de um problema
em subproblemas, os quais sao resolvidos separadamente.

- Vocé aprendera, a partir de exemplos, como criar uma solucao em
programacao dinamica para resolver um novo problema.

O problema da mochila

Vamos rever o problema da mochila, visto no Capitulo 8. Vocé é um ladrao
com uma mochila que consegue carregar apenas 16 quilos.

Vocé tem trés itens disponiveis para colocar dentro da sua mochila.

- |
RADIO NOTEROOK vIOLAO
R43000 R%2000 R41500

AKG IKG 1KG

Quais itens vocé deveria roubar para maximizar o valor roubado?

A solucao simples

O algoritmo mais simples é o seguinte: vocé deve testar para todos os
conjuntos de itens possiveis e descobrir qual conjunto maximizara o valor
roubado.

MNOTEROOK

RADIO VIOLAD
+
) - + RADIO
i i NoTEB0OK
W nEo cape X nZo cae

VALOR MANXIMO

Isto funciona, mas é uma solu¢do muito lenta, pois para trés itens vocé
devera calcular oito conjuntos possiveis. Para quatro itens, sdo 16 conjuntos.
Cada item adicionado dobrara o niimero de cdlculos. Este algoritmo tem
tempo de execugdo O(2/n); é muito, muito lento.

Esta solucdo ndo é pratica para qualquer nimero razoavel de itens. No
Capitulo 8, vimos como calcular uma solugdo aproximada. Esta solugao é
proxima o suficiente da solu¢ao ideal, mas talvez ndo seja a propria.

3 1TeNS - 4— ITENS: 5 ITeENs:

] -

3 —
COMTUNTOS POSSTIVETS

16 5=

COMTUNTOS POSSTVELS

= \"1
QS o, ot
6T g O 4

WD
PV <o
ot CONTUNTOS POSSTVETS

Entédo, como calcularemos a solugédo ideal?

Programacao dinamica

Resposta: Usando a programagdo dinamica! Vamos observar como o
algoritmo da programacao dinamica funciona. Ele comega com a resolugao
de subproblemas e vai escalando-os até resolver o problema geral.

No problema da mochila, vocé comecaria resolvendo o problema para
mochilas menores (ou “submochilas”) e iria escalando estes problemas até
resolver o problema original.

il

1- —
[
4 kg

A programacgdo dindmica representa um conceito complexo, entdo ndo se
preocupe se vocé ndo a entender logo de cara, pois vamos analisar diversos
exemplos.

Vou comegar mostrando o algoritmo na pratica. Depois disso, vocé com
certeza tera muitas duvidas! Darei o meu melhor para tentar respondé-las.

Cada algoritmo de programacao dinamica comega com uma tabela. Aqui
esta a tabela para o problema da mochila.

AS COLUNAS SA0 AS CAPACIDADES
DE cADA mOCHILA, DE 1 K& A 4 K&

1 2 2 4

o |
PARA CADA
ITEM DOS RADIO
aUATS PODEMDS T
ESCOLHER NOTEROOK J_ n

As linhas da tabela sao os itens e as colunas sao as capacidades das mochilas,
com valores de 1 quilo, 2 quilos, 3 quilos e 4 quilos. Vocé precisa destes
valores porque eles auxiliardo na resolu¢do dos subproblemas.

A tabela comega vazia, mas vocé preenchera cada célula dela. Quando a
tabela for preenchida, a resposta do problema tera sido encontrada! Por
favor, faga a sua propria tabela e me acompanhe.

A linha do violao

Mostrarei a formula para calcular esta tabela mais tarde. Primeiro, vamos
seguir um passo a passo, comegando na primeira linha da tabela.

vioLAo
RADIO » -
NOTEBROOK

Esta é a linha do violdo, isso indica que vocé esta tentando coloca-lo na sua
mochila. Em cada célula, uma decisdo simples sera tomada: Vocé roubara ou
ndo o violao? Lembre-se de que vocé esta tentando encontrar o conjunto de
itens perfeito para roubar, o qual maximizara o valor do roubo.

A primeira célula indica uma capacidade de peso para mochila igual a 1
quilo. O violdo pesa exatamente isso, 0 que nos confirma que ele cabe na
mochila! Assim, o valor desta célula é R$ 1.500 e ela contém um violao.

Vamos comecar a preencher a tabela.

1 2 2 4

e ——
. [raseo
vIOLAD v
F__-_____.______...._.. .._-—-—'-—"1"'_'_._._'_'
RADIO
HNOTEROOK

] —

Cada célula da tabela contera uma lista de todos os itens que cabem na
mochila.

Vamos para a proxima célula, que tem uma capacidade de 2 quilos. Bom,
com certeza o violao cabe!

1 2 3 4

" R41500 | R41500
vIoLAe v g
| I B
RADIO
-'———4
NOTEBOOK

H

E fazemos o mesmo para o restante desta linha. Lembre-se: esta é a primeira
linha, portanto vocé tem apenas o violdo para escolher, pois estamos
considerando os outros itens como indisponiveis para o roubo.

1 2 3 4

- R&1CO0 | R41500 | RE1S00
vIoLAO g v v
v \'4 |
RADIO
MOTEBOOK

Vocé provavelmente estd confuso em relagdo ao porqué de utilizarmos
mochilas com capacidades de 1 quilo, 2 quilos e assim por diante, quando o
problema especificou que a sua mochila tem capacidade para 16 quilos.
Vocé se lembra de quando eu disse que a programacgdo dinamica inicia com
problemas menores e os resolve até chegar ao problema geral? Vocé esta
resolvendo subproblemas que o ajudario a resolver o problema especificado.
Continue lendo com atencao, e as coisas comecario a fazer mais sentido.

Agora, sua tabela deve estar assim:

i 2 3 %

" R&lsml R§1500 | R41500
v v oYl
RﬂDIc-
HOTEROOK

Lembre-se de que estamos tentando maximizar o valor contido na mochila.
Esta linha representa o melhor palpite atual para este mdximo. Assim, agora,
de acordo com esta linha, se vocé tivesse uma mochila com capacidade de 4
quilos, o valor maximo que vocé poderia roubar seria R$ 1.500.

1 2 3 4

NO550 MELHO
41 m\ R41500 R41500 | R41500 o, :HT RL
vIOoLAO R315 ¢

v Vv
.. s (G 50BRE © QUE ©
) LADRAO DEVERIA
RADIO ROUBAR: 0 VIOLAO,

QUE CUs5TA R41500

NOTEBOOK

{ i —

Vocé sabe que esta nao é a solugdo final. Ao adentrarmos no algoritmo,
teremos estimativas mais refinadas.

A linha do radio

Vamos preencher a proxima linha, a qual é relativa ao radio. Agora que vocé
esta na segunda linha, pode roubar tanto o radio quanto o violdao. Em cada
linha, sera possivel roubar o item relativo aquela linha e todos os itens das
linhas anteriores. Porém o notebook ainda nio é uma possibilidade. Vamos
comecar com a primeira célula, relativa a uma mochila com capacidade de 1

quilo. O maximo valor atual que vocé pode roubar com uma mochila de 1
quilo é R$ 1.500.

MAXIMO ATUAL PARA
UMA MOCHILA COM 3 4
CAPACTOADE PARA 1kg l 2

& rR41c00 | R%1500 R41500 [Ril;ncl
vIOoLAO " v v

RADIO

NOTEBODK /

NOVO MAXIMO PARA
Ums MOCHILA com
CAPACIDADE PARA 1k5

Vocé deveria roubar o radio?

Vocé tem uma mochila com capacidade de 1 quilo. O radio pode ser
colocado dentro dela? Nao, ele é muito pesado! E como vocé nao consegue
roubar o radio, o palpite para maximizar o roubo com uma mochila de 1
quilo continua sendo R$ 1.500.

. 9 8 4

Erae e e o,
- R51500 | R416500 1500 R41500
v

. R41500

RADIO v
,..__-_._]. — N———

NOTEBROOK

J | A

A mesma situacgdo se repete nas proximas duas células, pois a mochila tem
capacidade de 2 quilos e 3 quilos, respectivamente. Ou seja, o valor maximo
continua sendo R$ 1.500.

1 2 3 4

o REICOO | R41S00 [R4ISO0 | R$1500
vioLao " \ v LV l v
— T

p R41500 | R41500 | R%1500
NOTEBOOK |

O radio ndo pode ser roubado, entio o seu palpite continua o mesmo.

E se vocé tiver uma mochila com capacidade para 4 quilos? Aha! O radio
finalmente pode ser roubado! O valor maximo antigo era R$ 1.500, mas,

com a possibilidade de roubar o radio, o valor se torna R$ 3.000! Ou seja,
vamos roubar o radio.

1 2 3 4

REIC00| RAIS00 | R&IS00 | RA1500

vIOLAO v
3 © R43000 ~
RADTIO TR
— |"‘—'-"—-——-_
NOTEROOK

Vocé acabou de atualizar a sua estimativa! Se vocé tiver uma mochila com
capacidade para 4 quilos, conseguira roubar itens que valem R$ 3.000. E
possivel visualizar na tabela que a sua estimativa estd sendo incrementada.

1 2 3 4

vIOLAOG Rﬂ;ﬂ:\ “1?03 m!m: Rﬂ;of, €= ESTIMATIVA ANTIGA
A i R
RADIO Rﬂmﬂ R’il';ﬂr: mgﬁ: ""5“.“5’2 7| = nova ESTIMATIVA
—
NOTEBOOK | & ESTIMATIVA FINAL

A linha do notebook

Vamos fazer o mesmo com o notebook! Ele pesa 3 quilos, portanto nio sera
possivel rouba-lo com a mochila de 1 quilo e 2 quilos. Assim, a estimativa

para as primeiras duas células continua sendo R$ 1.500.

1 2 3 4

~ R%1500 | R41500 | R41500 | Rriicoo
vIoLAO ¥ b G y
|) L
* ¥ M J
RADIO R%1500 | R41500 | R41500 | R43000
L v LV v R
N} N T
NOTEBROOK | R41500 | R%1500
v v /

Com a mochila de 3 quilos, a estimativa antiga para o valor maximo era de
R$ 1.500. Porém vocé pode escolher roubar o notebook agora, que vale R$
2.000. Logo, o novo maximo estimado é R$ 2.000!

1 2 3 4

" R41500 | R41500 | R41500 | R&1500
vIOLAO u o V v
RADIO R41500 | R41500 | R41500 | R43000

LV \ v " R

J‘_ J; P,

NOTEBOOK | R41c00 | R41500 | R42000-
v 2 RN ‘

Com a mochila de 4 quilos as coisas ficam interessantes. Esta é uma parte
importante, pois a estimativa atual é de R$ 3.000. Vocé pode colocar o
notebook na mochila, mas ele vale apenas R$ 2.000.

.R$ 3000 Vs R$Zooo.

RADIO NOTEROOK

Humm, isso ndo é tdo bom quanto a outra estimativa. Mas espere ai! O
notebook pesa apenas 3 quilos, o que deixa a mochila com capacidade para

mais 1 quilo. Ou seja, vocé pode colocar mais alguma coisa que pese 1 quilo
na mochila.

R$3000vs [R$2000 4 77 7

; DE
bIo M GO]kﬂ
RAeL HORaE ESPACO LIVRE

Qual o valor maximo que vocé consegue colocar em uma mochila com 1
quilo livre? Bem, vocé ja calculou isso.

1.2 3 4

R41500 | R41500 | R41500 [R41500
v
o | R vV
' v J
VALOR R41500 | R41500 | R41500 | R42000
MAXIMO o7 e " .
PAR“ 1 Kﬁ J. \L LN
R41C00 [R41500 | R42000-
v ol [

De acordo com a ultima estimativa, é possivel colocar um violdo em 1 quilo
de espaco livre, sabendo que ele vale R$ 1.500. Portanto a comparacao real é
a seguinte:

R$3000 5 [R$2000 4 R%1500
RADIO NOTEBOOK vIoLAO

Vocé pode estar se perguntando por que estivemos calculando os valores
maximos para mochilas menores. Espero que agora tudo faca sentido!
Quando vocé tem espago sobrando, é possivel usar as respostas dos
subproblemas para descobrir o que colocar no espaco livre. Assim, a melhor
opgao é levar o notebook + violao, com valor de R$ 3.500.

A tabela final ficara assim:

vIoLAo R41500 | R%1500 | R41500 | R&1500
jisl¥ i Y T v
E 3 F -

RibID R%1500 | R41500 | R41500 | R%3000
[l ‘U"- i V -""'—-—-M.__, R
F >

NOTEBOOK | RAIS00 | R41500 | R42000 | Rizsoo’”

>, F N

\' v M Ny

& A RESPOSTA!

E ali esta a resposta: O valor maximo que cabera na mochila é R$ 3.500,
referentes a um violao e um notebook!

Vocé pode achar que usei uma férmula diferente para calcular o valor da
ultima célula, mas isso é impressao, pois pulei algumas complexidades
desnecessarias enquanto preenchia os valores das células anteriores. Cada
célula é calculada com a mesma férmula, que pode ser vista a seguir:

DA SO |. © MAXImMO ANTERTOR(VALOR NA cELULA[i-1][;1)
A vSs
ceLULA[i][;] = maxImo DE
LAl) 2 . VALOR DO ITEm ATUAL + VALOR DO ESPACD RESTANTE

7
cELyLa[i-1][j-Peso bo ITEm]

Vocé pode usar esta formula em cada célula da tabela e devera encontrar
uma tabela igual a esta demonstrada aqui. Vocé se lembra de quando falei
sobre resolver subproblemas? Combinamos as solu¢des de dois
subproblemas para resolver um problema maior.

Perguntas frequentes sobre o problema da mochila

Talvez vocé ainda pense nessa solu¢ao como se fosse algum tipo de magica.
Pois bem, nesta secdo trataremos de algumas perguntas frequentes.

O que acontece se vocé adicionar um item?

Imagine que ha um quarto item que vocé pode roubar, o qual vocé nao havia
percebido. Suponha que este item seja um iPhone.

Vocé deve calcular novamente tudo para levar este item em consideracao?
Claro que ndo. Lembre-se: a programacao dindmica continua construindo
progressivamente a sua estimativa. Até agora, estes sdo os valores maximos.

12 3 4 |

vIOLAO R§1500 | R41500 | R41500 | R41S00
Vv \'4 \" \'4
: R41600 | R41500 | R%1500 | R43000
D
RADIO % - Y R
Q0 2000
NOTEBOOK RU500 | RWIS Ré R43500

vV Vv N * NV
O que significa que para uma mochila de 4 quilos vocé conseguira roubar

um total de R$ 3.500 em itens. Vocé achou que este era o valor maximo
final, mas agora vamos adicionar uma linha para o iPhone.

1 2 3 4

5 T_;:;_'ll R41C00 | REIS00 | rssoo

vIOLAO V Vv \"4 ___._.i

REISO0 | RAIS00 | RE3000

RADTO -l N7 v R

[RE1S00 | RAIS00 | R42O0O | REISOO

NOTEBOOK | y NNy
IPHONE

ﬁ

NoVA RESPOSTA

E agora temos o valor maximo atualizado! Tente preencher esta linha nova
antes de prosseguir.

Vamos comecar com a primeira célula. O iPhone pode ser levado com uma
mochila de 1 quilo. O valor maximo antigo era R$ 1.500, mas o iPhone custa
R$ 2.000. Assim, levaremos o iPhone.

1 2 3 4

| [asoo
. RE1CO0Q R51500 R41509 R41G
vioLho v \Y) " v
B RE1500 R41500 R51500 RE2000
RADIO v v 7 R
R%1500 R51500 R42000 R42500
e \" \" N NV
REZ000
IPHONE 1 l

Na proxima célula é possivel levar o iPhone e o violao.

[REs00 | Rétsoo | Rétsoo | Réisoo |
\'4 V \ \")
R51500 | R41500 | R%1500 | R53000
viv]v][R

i

;’;150(} R41C00 | R42000 R43500
\ \'4 N NV
R&2000 | przcoo

T | v

=

Para a célula 3, ndo ha op¢ao melhor do que levar o iPhone e o violdo
novamente, entao deixe esta célula como esta.

Na ultima célula as coisas ficam interessantes. O valor maximo atual é R$

3.500, mas vocé pode roubar o iPhone e ainda ter 3 quilos de espaco
sobrando.

R$3500 vs(R$2000 4 227

NOTEBOOK + ViolAo IPHONE Zkq DE ESPAGO LIVRE

Estes 3 quilos valem R$ 2.000, sendo R$ 2.000 do iPhone + R$ 2.000 do
subproblema antigo, totalizando R$ 4.000! Ou seja, temos um novo
maximo!

Aqui esta a tabela final:

[R41500 | R41500 | R&1500 R41500 ‘
V "4 \'4 Vv
R41500 | R41500 | R41500 | R&2000
V Vv \'4 R
R&1500 | R41500 | R42000 | R4E500
\"4 \"4 N * NV
R42000 | R42500 | R43500 | R44000
1 1V | 1V TN

B
i

NOVA RESPOSTA

Pergunta: O valor da coluna podera diminuir? Isto é possivel?

1 2 2 4

VALOR MAXIMO r]
QQ
DIMININDO R%1500 | R41500 | R41S R41500

ENQUANTO
AVANGANOS % 0 } @D | R&3000

——

Pense na resposta antes de continuar.
Resposta: Nao. A cada iteracdo, vocé armazenara a estimativa maxima atual.

A estimativa nunca podera ficar abaixo do que ela ja é!

EXERCICIOS

9.1 Imagine que vocé consegue roubar outro item: um MP3 player. Ele pesa
1 quilo e vale R$ 1.000. Vocé deveria rouba-lo?

O que acontece se vocé modificar a ordem das linhas?

A resposta mudara? Imagine que vocé preenche as linhas nesta ordem:
radio, notebook, violdo. Como a tabela ficara? Preencha-a antes de
prosseguir.

A tabela tera a seguinte forma:

{1 2 3 4

Rﬂ:DICﬁ \] r Qj Szf; R’H;ﬁo]
| +—
NOTEBOOK & %] Rﬂf,m WEW
$1S
vIOLAOD BRR0Y |, R R42000 | R43500
v v M J_ Moy

A resposta nao muda. Logo, a ordem das linhas ndo importa.

E possivel preencher a tabela a partir das colunas, em vez de a
partir das linhas?

Tente vocé mesmo! Neste problema, isso ndo fara diferenga. Porém, poderia
fazer para outros problemas.

O que acontece se vocé adicionar um item menor?

Imagine que vocé possa roubar uma joia que pese 0,5 quilo e valha R$ 1.000.
Até agora, sua tabela assumiu apenas que os pesos eram inteiros. Porém,
com a decisao de roubar um colar, vocé acaba com 3,5 quilos sobrando.
Qual o valor maximo para 3,5 quilos livres? Vocé nao sabe, pois calculou
apenas para mochilas de 1 quilo, 2 quilos, 3 quilos e 4 quilos. Ou seja,
precisa saber o valor para uma mochila de 3,5 quilos.

Por causa da joia vocé devera refinar a sua tabela, a qual serd modificada.

o5 1 15 2 25 3 35 4

Ll !'] _T l

ViolAo [, ". ! | | | |
) _ + — 1 3 i SRS

RADIO | | . |
S S E— e TR _1__ e |__ -

NOTEBOOK T I]

' E e i e

9 N (N DU, W S T N (N

Vocé consegue roubar fracées de um item?

Imagine que vocé seja um ladrdo que esteja em um mercado. Vocé pode
roubar pacotes de lentilhas e arroz, e caso ndo seja possivel roubar o pacote
inteiro, existe a possibilidade de abrir o pacote e pegar a quantidade que
vocé conseguir roubar. Logo, ndo ¢ mais tudo ou nada, pois é possivel levar
uma fragdo de um item. Como vocé lida com isso usando programacao
dindmica?

Resposta: vocé nao lida, pois nao é possivel. Com a programagdo dinamica,
¢ tudo ou nada. Nao ha uma maneira de levar metade de um item.

Porém este caso ¢ facilmente resolvido por meio do uso de um algoritmo

guloso! Primeiro, pegue o quanto vocé pode do item mais valioso. Depois
que vocé pegar tudo desse item, pegue o maximo do préximo item mais

valioso, e assim por diante.

Suponha, por exemplo, que vocé possa escolher entre estes itens:

LN |

QUINoA DAL ARROZ
R46/kg R43/kq R42/kg

O quilo da quinoa ¢ mais caro do que todo o resto. Sendo assim, pegue o
maximo de quinoa que vocé conseguir carregar! Se sua mochila ficar cheia,

esta é a melhor op¢ao possivel.
AOCHIA

v/ CHEIA OF
QUINog

Se pegar toda a quinoa e ainda tiver espago em sua mochila, pegue o
préximo item mais valioso, e assim por diante.

Otimizando o seu itinerario de viagem

Imagine que vocé esteja indo a Londres para passar férias. Vocé tem dois
dias para ficar por 14, mas deseja ver muitas coisas. Porém néo é possivel
fazer tudo, entdo vocé organiza uma lista.

ATRAGAO TEMPO RANKING
ABADIA DE WESTMINSTER |1/2 DIA F
TEATRO THE ¢:LOBE 1/2 dIA 6
GALERIA NACIONAL 1bIA 9
MUSEU BRITANICO 2 DIAS q
CATEDRAL DE 5A0 pAULo [1/2DIA| D

Este é o problema da mochila se repetindo! No entanto, em vez de uma
mochila, agora vocé tem tempo limitado e, em vez de radios e notebooks,
existe uma lista de lugares que vocé quer visitar. Faga a tabela de
programacao dinamica para esta lista antes de prosseguir.

Ela deve ficar assim:

‘ I!/'z -2

b
wstmstr | | |

TEATRO THE GLoBE

GALERIA NACIONAL

MUSEU BRITANICO
sRo PAULO l

i

Vocé acertou? Agora preencha a lista. Quais lugares vocé visitara? Aqui esta
a resposta:

| 1% 2

h"\.-

sAo PAULo Po) Tanl et

.T-
RESPOSTA FINAL:
ABADIA DE WESTMINSTER, GALERIA NACIONAL
E CATEDRAL DE SAo pAulo

I]' 1
WESTMINSTER 7
\j?u o fw - :?-.w ?J u
TEATRO THE GLOBE :tf, -y ,I..':’ et g £ 8 15’; .
y-_"“-—.- S # - i -
GALERIA NACIONAL | %, |13 wr| 185 571-&
} & L
v v v N J
MUSEU BRITANICO | Fu | 1D wr | |6 wed 220
r% "‘

BiE. 2] e
|- 1

L]

Lidando com itens com interdependéncia

Imagine que vocé queira ir a Paris e tenha uma lista de coisas que deseja ver.

ToRRE EfFEL ||hoa | D
O LOUVRE | 72 OA 9

NOTRE DAME | aor | F

Visitar estes lugares demora bastante tempo, pois primeiro vocé deve viajar
de Londres a Paris, o que leva metade de um dia. Se vocé quiser visitar os
trés lugares, precisard de quatro dias e meio.

Mas espere ai, isso nao esta correto. Vocé nao precisa ir a Paris para visitar
cada item, pois, assim que vocé estiver na cidade, cada item devera levar
apenas um dia. Dessa forma, o calculo deveria ser um dia por item + meio
dia de viagem = 3,5 dias, e ndo 4,5 dias.

Portanto, se vocé colocar a Torre Eiffel em sua mochila, o Louvre se tornara
. <« » . /4 . . .
mais “barato’, pois custara apenas um dia em vez de custar 1,5 dia (um dia e

meio). Como vocé modela estas situagdes em programacao dinamica?

Nao ¢ possivel porque a programacgdo dinamica ¢ uma ferramenta poderosa
para resolver subproblemas utilizando estas respostas para resolver um

problema geral. Porém a programacdo dindmica sé funciona quando os seus
subproblemas sdo discretos, ou seja, quando eles ndo sdo dependentes entre si.
Visto isso, ndo hd maneira de levar em considera¢ao as viagens a Paris
utilizando o algoritmo de programagdo dinamica.

E possivel que a solucao requeira mais de dois subproblemas?

E possivel que a melhor solucdo envolva o roubo de mais de dois itens.
Porém, da maneira como este algoritmo foi configurado, vocé esta
combinando apenas duas mochilas no maximo e, sendo assim, jamais tera
mais de duas submochilas. No entanto é possivel que as suas submochilas
tenham submochilas.

)
29

T

NAo E possilEL
TER 2 supMmoCHILAS

mAS £ possiVEL TER
SUBMOCHILAS QUE POSSUAM
S5UAS PROPRIAS SUBMOCHILAS

DIAMANTE
Rk 1 MiLHAo
35

E possivel que a melhor solucdo nao utilize a capacidade total
da mochila?
Sim. Imagine que vocé possa roubar também um diamante.

Este diamante é enorme, pesa 3,5 quilos e vale milhoes de reais, muito mais
do que todos os outros itens. Vocé obviamente deve roubd-lo! Porém ainda
ha meio quilo de capacidade em sua mochila, mas nada pesa tao pouco.

EXERCICIOS

9.2 Suponha que vocé esteja indo acampar e que sua mochila tenha
capacidade para 6 quilos. Sendo assim, vocé pode escolher entre os itens
abaixo para levar. Cada item tem um valor, e quanto mais alto este valor,
mais importante o item é.

o Agua, 3kg, 10
o Livro, 1 kg, 3

« Comida, 2 kg, 9
« Casaco, 2 kg, 5
« Camera, 1 kg, 6

Qual é o conjunto de itens ideal que deve ser levado para o acampamento?

Maior substring comum

Ja vimos um problema de programacgdo dinamica até agora. Quais eram as
caracteristicas que auxiliavam na identifica¢do deste tipo de problema?

o A programacao dinamica é util quando vocé estd tentando otimizar em
relagdo a um limite. No problema da mochila, era necessario maximizar o
valor dos itens roubados, limitados pela capacidade da mochila.

« Vocé pode utilizar a programacao dinamica quando o problema puder ser
separado em subproblemas discretos que ndo dependam um do outro.

Pode ser dificil encontrar uma solugdo com programacao dindmica, e é isso
que esta se¢do focard. Algumas dicas gerais sdo:

« Toda soluc¢ao de programagdo dinamica envolve uma tabela.

o Os valores nas células sdo, geralmente, o que vocé esta tentando otimizar.
Para o problema da mochila, os valores nas células eram os valores dos
itens.

o Cada célula é um subproblema, portanto, pense em como vocé pode
dividi-lo em outros subproblemas, pois isso lhe ajudara a descobrir quais
$30 0S seus eixos.

Vamos analisar outro exemplo. Imagine que vocé seja o dono do
dicionario.com. Assim, alguma pessoa digita uma palavra e vocé retorna a
definicéo.

Porém, se alguém digitar uma palavra com algum erro ortografico, vocé vai
querer que o seu sistema consiga dar um palpite referente a palavra correta

que a pessoa gostaria de ter digitado. Entdo, Alex esta pesquisando a palavra
fish (peixe, em inglés), mas ele acabou digitando hish. Esta palavra ndo existe
em seu diciondrio, mas vocé tem uma lista de palavras semelhantes.

'SEMELHANTE 4 VHISH:
-FIsH
< JISTA

(Este exemplo é apenas informativo, e vocé limitara a sua lista a somente
duas palavras. Na realidade, esta lista teria milhares de palavras).

Alex digitou hish, mas que palavra ele quis digitar: fish ou vistal?

Criando a tabela

Como montamos a tabela deste problema? Vocé deve responder as seguintes
perguntas:

o O que sdo os valores das células?
« Como ¢ possivel dividir este problema em subproblemas?
« O que s3o os eixos da tabela?

Em programacgao dinamica, tentamos maximizar algo. Neste caso, estamos
tentando encontrar a maior substring comum que duas palavras tém em
comum. Assim, qual substring hish e fish tétm em comum? E hish e vista?
Isto é o que vocé quer calcular.

Lembre-se: os valores das células sdo o que vocé geralmente esta tentando
otimizar. Neste caso, os valores serdo provavelmente nimeros relativos ao
comprimento da maior substring que duas strings tém em comum.

Como dividimos este problema em subproblemas? Comparando substrings.
Assim, em vez de comparar hish e fish, vocé compararia his e fis antes. Cada
célula contera o comprimento da maior substring que duas substrings tém
em comum. Isso também da uma dica sobre os eixos, que provavelmente
serdao duas palavras. Portanto, a tabela fica deste jeito:

H _

Se isso parece magia negra, nao se preocupe. Este topico é bem complicado,
e é por esta razao que estou ensinando ele nesta altura do livro! Mais
adiante, darei um exercicio para vocé praticar programacao dinamica por si
mesmo.

Preenchendo a tabela

Agora vocé ja tem uma boa ideia de como a tabela deve ser. Qual é a
féormula para preencher cada célula da tabela? Aqui deixo vocé colar um
pouco, visto que ja sabemos como a solugdo deve ser, pois hish e fish tém
uma substring de comprimento igual a 3 em comum (ish).

Porém isso ainda ndo nos diz a férmula que devemos utilizar. Cientistas da
computagdo muitas vezes fazem piadas sobre a utilizacao do algoritmo de
Feynman.

1. Escreva o problema.

2. Pense muito sobre ele.

3. Escreva a solucio.

Cientistas da computagdo sdao pessoas bem engracadas!

Na realidade, ndo existe uma maneira de calcular a férmula neste caso.
Assim, vocé terd de experimentar e tentar encontrar algo que funcione. As
vezes, algoritmos nao sdo uma receita exata, mas sim uma estrutura na qual
vocé constrdi a sua ideia.

Tente encontrar uma solugao para este problema sozinho. Vou dar uma dica:
uma parte da tabela deve ser assim:

O que sdo os outros valores? Lembre-se que cada célula é o valor de um

subproblema. Por que a célula (3, 3) tem o valor 2?2 Por que a célula (3, 4)
tem o valor 0?

Continue lendo apo6s tentar descobrir uma férmula sozinho, pois, mesmo
que vocé ndo acerte, minha explicac¢do fara mais sentido.

A solucao
Aqui esta a tabela final.
H I s H
r ==
clolo|o]o
1ot o]0
Q|0 | 2|0
| o1 0 3
— :

E aqui esta a formula para preenchimento de cada célula.

1. 5E AS LETRAS
NAO COMBINAM,

o VALoR £ sz:%H | ¢ H
F O | O
[1 O
s |o 2
H 0

S5 ELAS COMBINAM,
© VALoR E IGUAL Ao VALoR Do
VIZINHO SUPERIOR ESQUERDO + 1

A férmula, em pseudocddigo, é assim:

if palavra_a[i] == palavra_b[j]: ©®

celula[i][j] = celula[i-1][j-1] + 1
else: O
celula[i][j] = ©

@ As letras combinam.
® As letras ndo combinam.

E aqui esta a tabela para hish vs. vista:

7 "
nlololololo
l ol l]o|o|O
S|o|lo|2]0]|O
H{o]o|ofo|o]

L e R

FINAL

Note que: para este problema, a solucdo final pode nao estar na tltima
célula! Para o problema da mochila, a ultima célula sempre retornaria a
solugdo final, mas para a maior substring comum, a solugdo sera o maior
numero da tabela, que pode nao estar na tltima célula.

Vamos voltar para a questdo original: qual string tem mais em comum com
hish? Tanto hish quanto fish tém uma substring de trés letras em comum. Ja
hish e vista tém uma substring de duas letras em comum.

Alex provavelmente quis digitar fish.

Maior subsequéncia comum

Suponha que Alex acidentalmente tenha procurado por fosh. Qual palavra
ele quis digitar: fish ou fort (forte, em inglés)?

Vamos compara-las usando a formula da maior substring comum.

F O s H1 E @ 5 N
Fltfolo O Flilolo]o
o |0]2 OO__ G 1__5??__6#
R [olo|o|o] c oo]o]
T [©6]° o Ow Hro &1-0 F2

Elas sao iguais: duas letras! Porém fosh é mais semelhante a fish.

EOSH
v N =
F1 S K s

FOSH
I 4 — 2
FORT
Vocé esta comparando a maior substring comum, mas neste exemplo deveria

comparar a maior subsequéncia comum, que é o niumero de letras em
sequéncia que duas palavras tém em comum. Mas como fazer isso?

Aqui estd a tabela parcial para fish e fosh.

FOs H

el 1
-
2

Hl | |

Vocé consegue descobrir a formula para esta tabela? A maior subsequéncia
comum ¢ semelhante a maior substring comum, o que faz com que as suas
férmulas também sejam bem semelhantes. Tente resolver sozinho. Darei a

resposta em seguida.

Maior subsequéncia comum - solucao

Aqui esté a tabela final:
F O 5 H F O s H
F > _L,l F 11—]7“' -+ | _____
5 L2 L2 o _qf’,ai b1)
R l b 2 S H’, | %2*“’2—
T ‘ﬂ Y 1*2 3

 MAIOR SURSEQUENCIA =2

MAIoR SUBSEQUENCIA -
comMum

CoMum

E aqui esta a formula para preenchimento de cada célula:

bo YizINHo SUPERIOR E
bo ViZINHo DA ESQUERDA

).5E AS LETRAS (DIFERENTE DA
NAC COMBINAM, MAICR SUBSTRING
ESColLHA © MmAloR Comum)

F\O § H
: |
FY (|}
WK
S 72
H\ l 4

\ l
2. 5B ELAS COMBINAM, o VALOR
E o YALoR Do V\izINHo SUpERIOR

ESQUERDO +1 (ASS51M Como
NA MAIOR SUBSTRING Comum)

E o pseudocddigo relativo:

if palavra_a[i] == palavra_b[j]: ©
celula[i][j] = celula[i-1][j-1] + 1

else: O
celula[i][]j]

@ As letras combinam.

max(celula[i-1][]j], celula[i][j-1])

® As letras ndao combinam.

Uau, vocé conseguiu! Este com certeza é um dos capitulos mais complicados
do livro. E entdo, a programacao dinamica realmente ¢ utilizada na pratica?
Sim:
« Bidlogos utilizam a maior subsequéncia comum para encontrar
similaridades em fitas de DNA, para entdo dizer o quao semelhante sao

dois animais ou duas doencas. A maior subsequéncia comum esta sendo
usada para encontrar a cura para a esclerose multipla.

« Vocé ja utilizou o comando diff (como git diff)? Diff informa a
diferenca entre dois arquivos usando programagdo dinamica para isso.

« Falamos sobre similaridade entre strings. A distdncia Levenshtein mede o
qudo similar sdo duas strings usando também a programacao dinamica. A
distancia Levenshtein é utilizada tanto para simples corretores
ortograficos quanto para descobrir se um usuario esta fazendo upload de
dados com direitos autorais associados.

« Vocé ja usou algum aplicativo que faz quebras de linhas, como o
Microsoft Word, por exemplo? Como o software sabe onde quebrar a
linha para que o comprimento de todas as linhas permaneca igual?
Programacgao dindmica!

EXERCICIOS

9.3 Desenhe e preencha uma tabela para calcular a maior substring comum
entre blue (azul, em inglés) e clues (pistas, em inglés).

Recapitulando

o A programacao dinamica é util quando vocé esta tentando otimizar algo
em relacdo a um limite.

o Vocé pode utilizar a programac¢ao dinamica quando o problema puder ser
dividido em subproblemas discretos.

« Todas as solugdes em programacgao dinamica envolvem uma tabela.
o Os valores nas células sdo, geralmente, o que vocé esta tentando otimizar.

o Cada célula é um subproblema, entao pense sobre como ¢é possivel dividir
este subproblema em outros subproblemas.

o Nao existe uma férmula tnica para calcular uma solugdo em
programacgao dinamica.

1 N. T.: Essas sdo as palavras originais em inglés, escolhidas pelo autor. Por motivos de
légica das figuras e codigos que vocé verd a seguir, foram mantido os termos
originais.

10

K-vizinhos mais préximos

Neste capitulo

- Vocé aprendera como construir um sistema de classificacao
utilizando o algoritmo dos k-vizinhos mais préximos.

-« Vocé conhecera a extracao de caracteristicas.

« Conhecera a regressao: como prever um numero, como estara o
valor da bolsa de valores amanha ou quanto um usuario gostara de

um filme.

- Vocé vai aprender a reconhecer em que casos devera usar o
algoritmo dos k-vizinhos mais proximos e também as suas
limitacoes.

Classificando laranja versus toranjas

2

/

%

Olhe para esta fruta: ela ¢ uma laranja ou uma toranja? Bem, eu sei que
toranjas geralmente sdo maiores e mais avermelhadas.

Minha linha de pensamento ¢ esta: tenho um grafico na minha mente.

-+ VERMELHO

LARANTA .

R

v

PEQUEND

L = LARANTA
T = TORANTA

Falando de maneira geral, frutas maiores e mais avermelhadas sao toranjas,
e como essa fruta é bem grande e vermelha, ela provavelmente ¢ uma
toranja. Mas e se tivéssemos uma fruta parecida com esta?

-« VERMELHo

LARANTA

FRUTA MISTERIOSA

T r T 7
T
T
| L T ‘l'T
o] .= Lk
- - L
L L L
TAMANHO ”
PEQUENG . . GRANDBE

Como vocé classificaria essa fruta? Uma maneira de fazer isso é observar os

vizinhos dela. Dé uma olhada nos trés vizinhos mais proximos.

o N

¢ T T

& T

' i3
o | L T T_r
0o L L;,-—J-/'f

2 4 [R

g L L L

3 —_—

TAMANHO

PEQUENO GRANDE

A maioria dos vizinhos é composta de laranjas, e nao de toranjas. Logo, essa
fruta provavelmente é uma laranja. Parabéns! Vocé acabou de usar o
algoritmo dos k-vizinhos mais proximos para fazer uma classificagdo! O
algoritmo é bem simples.

i - T T T T
T 3 T
? .—+ / — e .
. i <),
L L J L i
L L
L L L L
1. voCE TEM uma Noya 2. vocE olHA PARA o5 TRES 3. mAIS VIZINHOS Sho LARANTAS,
FRUTA PARA CLASSIFICAR ViZINHeS MA15 PROXIMOS DELA LoGo ESTA FRUTA PROVAVELMENTE
E uma LARANTA

Mesmo que ele seja simples, este algoritmo é muito util! Se vocé estiver
tentando classificar alguma coisa, talvez seja uma boa ideia tentar usa-lo
primeiro. Vamos olhar mais alguns exemplos praticos.

Criando um sistema de recomendacodes

Suponha que vocé seja o dono do Netflix e queira criar um sistema de

recomendagdes de filmes para os seus usudrios. De certa forma, este
problema é semelhante ao problema das toranjas!

Pode-se criar um grafico com todos os usudrios.

&
& ez &

€] @
(4T @ T

_‘7

Esses usuarios sdo agrupados por similaridades, ou seja, usuarios com
gostos similares sdo colocados préximos uns dos outros. Imagine agora que
vocé queira recomendar filmes para Priyanka. Para isso, encontre os cinco
usuarios mais proximos dela.

iy

—

LY

Fd

Justin, JC, Joey, Lance e Chris tém gostos similares para filmes. Logo,
qualquer filme que eles gostem Priyanka provavelmente gostara!

Feito este grafico, sera facil criar o sistema de recomendagdes. Se Justin
gostou de um filme, recomende este filme para Priyanka.

VoCE PoDE GOSTAR DE:

IARARARARAY

o A
<> AESCOLHA PERFEITA " ot o
A. voCE pobE GoSTAR DE: 2 . ELE GoSTou bo FILME 3. RECOMENDE ESTE

FILME A PRIYANKA

Mas ainda esta faltando uma parte importante: vocé agrupa os usudrios por
similaridade, mas como faz para descobrir o quao semelhante dois usuarios
sao?

Extracao de caracteristicas

No exemplo da toranja, compararam-se as frutas baseando-se em seu
tamanho e sua cor. Ou seja, o tamanho e a cor sdo as caracteristicas que vocé
esta comparando. Agora suponha que vocé tenha trés frutas e que as
caracteristicas de cada uma sejam extraidas.

A 3

TAMANHO: 2 2
VERMELHIDAO: 2 |

¢ p

Podemos plotar as trés frutas.

A .

[+]
'3

X

@ A

3 L[]

= | B

— —_—
TAMANHo

Olhando para o grafico é possivel identificar visualmente que as frutas A e B
sao similares. Vamos medir o qudo proximas elas sdo. Lembre-se de que
para encontrar a distancia entre dois pontos utilizamos o teorema de

Pitagoras.
| 2 z
(X,—}(._:) + C\f: -'Yz)

Por exemplo, aqui temos a distancia entre A e B:

Je-2 « 2oy

=4V
-1

A disténcia entre A e B é 1. Sabendo disso, vocé também pode encontrar o
restante das distancias.

M L%
¥ Eil

A férmula da distancia confirma o que vocé observou visualmente: as frutas
A e B sao semelhantes.

Agora, suponha que vocé esteja comparando usudrios do Netflix. Para isso é
necessario criar o grafico de usudrios de alguma maneira e converter cada
usuario em um conjunto de coordenadas, assim como fizemos com a fruta.

Uma vez que os usudrios estejam em um grafico, é possivel medir a distdncia
entre eles.

Quando os usuarios se registrarem no Netflix, faga-os avaliar algumas
categorias de filmes de acordo com o quanto eles gostam delas. Dessa
maneira, serd possivel converter os usudrios em numeros. Para cada usudrio

vocé terd um conjunto de notas!

7o fs8

PRIYANKA JuUSTIN MORPHEUS

COMEDIA 3 4 2
Agﬁu 4 3 5
DRAMA 4 5 '
TERROR | I (3
ROMANCE 4 5 |

Priyanka e Justin gostam de filmes de romance e odeiam filmes de terror. Ja
Morpheus gosta de filmes de a¢do, mas odeia filmes de romance (ele detesta
quando um bom filme de a¢do é arruinado por uma cena de romance
cafona). Vocé se lembra de como, no exemplo das laranjas versus toranjas,
cada fruta era representada por um conjunto de dois nimeros? Aqui, cada
usuario é representado por um conjunto de cinco numeros.

) »(2,2)

>(3,4,4,1,4)

Um matematico diria que, em vez de calcular a distancia em duas
dimensdes, vocé agora esta calculando a distdncia em cinco dimensoes, mas
a formula da distancia continua a mesma.

J (@ -a2) +(b-b) + (€Y +(d.-d) +(e.-e)

Porém agora ela envolve um conjunto de cinco numeros em vez de apenas

dois numeros.

A férmula da distancia é flexivel: vocé poderia ter um conjunto de milhées
de nimeros e ainda assim usar a mesma férmula para encontrar a distancia.
Talvez vocé esteja pensando “O que a distdncia significa quando temos cinco
numeros?”. A distancia informa a similaridade entre estes conjuntos.

\l (2-4) +(&-3) +(4-5) + () +(4-5)

,_.xr|+i+t+o+|
Ny

= 2

Aqui temos a distancia entre Priyanka e Justin.

Priyanka e Justin sdo muito semelhantes, mas qual a diferenca entre
Priyanka e Morpheus? Calcule a distancia antes de seguir adiante.

Vocé acertou? Priyanka e Morpheus estao a 24 unidades de distancia. Desta
forma, a distancia mostra que os gostos de Priyanka sao mais semelhantes
aos de Justin do que aos de Morpheus.

Otimo! Agora é facil recomendar filmes para Priyanka: se Justin gostar de
um filme, recomende-o a Priyanka e vice-versa. Vocé acabou de construir
um sistema de recomendacoes de filmes!

Se vocé é um usudrio do Netflix, sabe que as vezes ele mostra mensagens
como “Por favor, avalie seus filmes. Quanto mais filmes avaliar, melhores
serdo as suas recomendagdes.”. Agora vocé entende o motivo. Quanto mais
filmes avaliar, maior serd a precisao do Netflix ao calcular o quao similar
vocé e outros usudrios sao.

EXERCICIOS

10.1 No exemplo do Netflix, calculou-se a distancia entre dois usuarios
diferentes utilizando a formula da distancia, mas nem todos os usuarios
avaliam filmes da mesma maneira. Suponha que vocé tenha dois

usudrios, Yogi e Pinky, os quais tém gostos similares. No entanto Yogi
avalia qualquer filme que ele goste com 5, enquanto Pinky é mais seletivo
e reserva o 5 somente para os melhores filmes. Eles tém gostos bem
similares, mas, de acordo com o algoritmo da distancia, eles ndo sao
vizinhos. Como vocé poderia levar em conta o sistema de avalia¢do
diferente deles?

10.2 Suponha que o Netflix nomeie um grupo de “influenciadores”. Por
exemplo, Quentin Tarantino e Wes Anderson sdo influenciadores no
Netflix, portanto as avaliacoes deles contam mais do que as de um
usuario comum. Como vocé poderia modificar o sistema de
recomendagdes de forma que as avaliagdes dos influenciadores tenham
um peso maior?

Regressao

Imagine que vocé queira fazer mais do que apenas recomendar filmes: vocé
deseja adivinhar como Priyanka avaliard determinado filme. Pegue as cinco
pessoas mais proximas dela.

=
s

Alias, fico falando sobre as cinco pessoas mais proximas, mas nao ha nada
de especial no numero 5; vocé poderia utilizar as duas, dez ou 10 mil
pessoas mais proximas. E por 1sso que o algoritmo é chamado de “k-
vizinhos mais préximos” e nao “cinco vizinhos mais proximos”!

Suponha que esteja tentando adivinhar uma nota para A Escolha Perfeita.
Bem, como Justin, JC, Joey, Lance e Chris avaliaram este filme?

JUSTIVGE .5

JC: 4
JOEN = 4
LANCE @ &

CHRIS ¢ 3

Seria possivel utilizar a média das avaliacoes deles, que é 4,2 estrelas. Isso é
chamado de regressdo. Estas sao as duas coisas basicas que vocé fara com o
algoritmo dos k-vizinhos mais préximos: a classificagdo e a regressao.

« Classifica¢do = classificar em grupos.
o Regressao = adivinhar uma resposta (como um numero).

A regressao ¢ muito util. Por exemplo, suponha que vocé administre uma
pequena padaria em Berkeley e nela vocé produza pao fresco diariamente,
mas esteja tentando prever quantos paes deve fazer por dia. Existe um
conjunto de caracteristicas sobre este problema:

e O clima em uma escalade 1 a 5 (1 = ruim, 5 = 6timo).

« Fim de semana ou feriado? (1 se for um fim de semana ou feriado; 0, caso
contrario).

« Hd um jogo nesse dia? (1 caso tenha; 0, caso contrdrio).

Além disso, vocé sabe quantos paes vendeu anteriormente para cada
conjunto diferente de caracteristicas.

| 3 22

2)(s,1.9) P?Ef .(3 b e AES
B P) - PAES .(4 ® ,1)- z‘ﬁg
-(4 P,2)= 45p [F] F) 2,8, 9)-

PAES PﬂEﬁ

Hoje ¢ um fim de semana de clima bom. Assim, baseado nos dados que voce
observou ha pouco, quantos paes vendera? Utilizaremos o algoritmo dos k-
vizinhos mais préximos, em que K = 4. Para isso, primeiro descubra os
quatro pontos mais proximos desse ponto.

@4.1,6)=?

Aqui temos as distancias, onde é possivel observar que os pontos A, B, D e E
s30 0s mais proximos.

A1 <«
B. 2 &
c. 9

D. 2 &
£ 1 «

£ 5

Faca uma média do numero de paes vendidos nesses dias: 218,75. Esse é o
numero de paes que vocé deveria fazer hoje!

Similaridade de cosseno

Até o momento, vocé tem usado a féormula da distincia para comparar a distancia entre dois
usudrios. Serd que essa é a melhor formula a ser utilizada? Uma férmula bastante usada na
pratica é a similaridade de cosseno. Suponha que dois usuarios sejam similares, mas um deles

seja mais conservativo em suas avaliagdes. Os dois adoraram Amar Akbar Anthony, de
Manmohan Desai. Paul deu 5 estrelas, mas Rowan deu apenas 4 estrelas. Assim, caso vocé
continue usando a férmula da distancia, esses dois usudrios podem acabar nido sendo
vizinhos, mesmo tendo um gosto similar.

A similaridade de cosseno ndo mede a distancia entre dois vetores, em vez disso, compara o
angulo entre dois vetores. Sendo assim, ela lida melhor com os casos apresentados até entéo.
A similaridade de cosseno estd fora do escopo deste livro, mas pesquise sobre ela caso utilize
o algoritmo dos k-vizinhos mais préximos!

Escolhendo boas caracteristicas

Para recomendar filmes, vocé solicitou aos usuarios uma avaliacdo sobre as
categorias de filmes de que eles gostavam. E se, em vez disso, solicitasse aos
usudrios uma avaliagdo baseada em imagens de gatos? Dessa forma, seria
possivel encontrar usudrios que avaliaram as figuras de maneira similar.
Porém este provavelmente seria o pior sistema de recomendacoes de filmes,
pois as “caracteristicas” ndo tém rela¢ao alguma com filmes!

Imagine agora que vocé pecga aos usudrios uma avaliagdo sobre alguns
filmes, de forma que seja possivel recomendar outros baseados nas respostas
fornecidas. Porém nesta avaliagdo as unicas op¢oes sao Toy Story, Toy Story
2, e Toy Story 3. Ela nao dird muito sobre o género de filme que os usudrios
preferem!

Ao trabalhar com o algoritmo dos k-vizinhos mais préximos, é muito
importante escolher as caracteristicas certas a serem comparadas, que sao:

« Caracteristicas diretamente correlacionadas aos filmes que vocé esta
tentando recomendar.

o Caracteristicas imparciais (se as unicas opcoes fornecidas aos usuarios
forem filmes de comédia, esta avaliacao ndo fornecera nenhuma
informacao util sobre o gosto dos usudrios em relacao a filmes de acéo,
por exemplo).

Vocé acha que notas sdao uma boa maneira de recomendar filmes? Talvez eu
tenha dado uma nota maior a The Wire do que a House Hunters, mesmo que
na realidade tenha passado mais tempo assistindo a House Hunters. Como
vocé melhoraria esse sistema de recomendacoes do Netflix?

Voltando ao exemplo da padaria: vocé consegue imaginar duas
caracteristicas boas e também duas caracteristicas ruins que poderiam ter
sido escolhidas neste exemplo? Talvez seja necessario fazer mais paes depois
de anunciar sua padaria no jornal, ou talvez vocé tenha de fazer mais paes
nas segundas-feiras.

Quando o assunto é escolher boas caracteristicas, ndo existe apenas uma
resposta correta, pois é preciso pensar sobre todos os diferentes aspectos que
devem ser considerados.

EXERCICIO

10.3 O Netflix tem milhdes de usudrios, e no exemplo anterior
consideraram-se os cinco vizinhos mais préximos ao criar o sistema de
recomendagdes. Esse nimero ¢ baixo demais? Ou talvez alto demais?

X
@8

Introducao ao aprendizado de maquina

O algoritmo dos k-vizinhos mais préximos ¢ muito ttil e ¢ a sua introdugao
ao mundo magico do aprendizado de maquina! O aprendizado de mdquina
¢ uma maneira de fazer com que o seu computador fique mais inteligente.
Vocé ja viu um exemplo de aprendizado de maquina ao criar um sistema de
recomendagdes. Vamos olhar mais alguns exemplos.

OCR

O OCR é um acrénimo para optical character recognition (reconhecimento
optico de caracteres). Com o OCR ¢é possivel fotografar um texto fazendo
com que o seu computador leia este texto a partir da imagem. A Google, por
exemplo, utiliza o OCR na digitalizagdo de livros. Mas como essa tecnologia
funciona? Por exemplo, considere o nimero abaixo:

Como vocé poderia reconhecer este numero de forma automatica? Podemos
utilizar os k-vizinhos mais préximos nesta tarefa da seguinte maneira:

1. Percorra diversas imagens de numeros e extraia as caracteristicas de cada
um deles.

2. Quando obtiver uma nova imagem, extraia as caracteristicas dessa
imagem e veja quais sdo os vizinhos mais préximos!

Este é um problema semelhante ao das laranjas versus toranjas. De um

modo geral, algoritmos OCR medem linhas, pontos e curvas.

LINHA ANGULo
s CURVA ¥ ¥

« ANGuLo < LINHA

=~ CuRVA ANGuLo

Portanto, quando vocé recebe um novo caractere, é possivel extrair as suas
caracteristicas.

A extragdo de caracteristicas é muito mais complicada quando falamos em
OCR do que quando falamos em frutas, mas é importante entender que até
mesmo tecnologias complexas sdo criadas a partir de ideias simples como os
k-vizinhos mais préximos. Além disso, esta mesma ldgica poderia ser
utilizada no reconhecimento de fala ou para o reconhecimento facial. Ja
reparou que quando vocé posta uma foto no Facebook, as vezes, ele é
esperto o suficiente para marcar as pessoas presentes na foto
automaticamente? Isso é aprendizado de maquina em agao!

A primeira etapa do OCR, onde vocé percorre todas as imagens de numeros
e extrai as caracteristicas, ¢ chamada de treinamento. A maioria dos
algoritmos de aprendizado de maquina tem uma etapa de treinamento, pois
antes de fazer com que o seu computador execute uma tarefa ele deve ser

treinado. O proximo exemplo envolve filtros de spam e ele tem uma etapa de
treinamento.

Criando um filtro de spam

Os filtros de spam utilizam outro algoritmo simples chamado de
classificador Naive Bayes. Assim, primeiro treinamos o classificador Naive
Bayes com alguns dados.

ASS5UNTOS SPAM2
NATUALIZE SUA SENHA" | wRo € seam
nyvoCE GANHoU 1 MILHAO DE REAIS" SeAM

"ME ENVIE A SUA SENHA" sPAam

"o PRINCIPE NIGERIANO LHE ENVIoU 10 MILHGES DE REAIS" | sPAM

"eELIZ ANIVERSARION NAO € SPAM

Suponha que vocé tenha recebido um e-mail com o assunto “Vocé ganhou
dez milhoes de reais!”. Isto é um spam? Vocé pode dividir essa frase em
palavras e verificar, para cada palavra, qual a probabilidade de ela aparecer
em e-mails que sejam spam. Nesse simples modelo, por exemplo, a palavra
milhées so aparece em e-mails que sdo spam. O Naive Bayes descobre qual a
probabilidade de algo ser um spam se suas aplica¢des forem similares as dos
k-vizinhos mais proximos.

Vocé poderia também utilizar o Naive Bayes para classificar frutas: vocé tem
uma fruta que é grande e vermelha, qual a probabilidade de ela ser uma
toranja? Este ¢ outro algoritmo simples que é razoavelmente efetivo. Nos
amamos esses algoritmos!

Prevendo a bolsa de valores

Este é um exemplo de uma tarefa complexa e de dificil realizacao com
aprendizado de maquina: prever se as acdes da bolsa de valores vao subir ou
descer. Como extraimos boas caracteristicas da bolsa de valores? Imagine
que vocé tenha estipulado que se as agdes subiram ontem, elas subirao hoje.
Isso é uma boa caracteristica? Ou suponha que vocé tenha determinado que
as agdes cairdo em maio. Isso funcionara? Nao existe uma maneira garantida
de utilizar valores anteriores para prever o futuro. Prever o futuro é dificil e
praticamente impossivel quando ha tantas variaveis envolvidas.

Recapitulando

Espero que este capitulo tenha fornecido uma boa ideia sobre todas as
diferentes aplicagcdes que vocé pode criar utilizando os k-vizinhos mais
préoximos e o aprendizado de maquina! O aprendizado de méquina é uma
area interessante na qual é possivel se aprofundar muito, caso seja de seu
interesse.

« O algoritmo dos k-vizinhos mais préximos ¢ utilizado na classificagdo e
também na regressdo. Ele envolve observar os K-vizinhos mais préximos.

» Classificagdo = classificar em grupos.
o Regressao = adivinhar uma resposta (como um numero).

o Extrair caracteristicas significa converter um item (como uma fruta ou
um usuario) em uma lista de nimeros que podem ser comparados.

o Escolher boas caracteristicas é uma parte importante para que um
algoritmo dos k-vizinhos mais préximos opere corretamente.

11

Préximos passos

Neste capitulo

« Vocé vera um breve resumo dos dez algoritmos que nao foram
cobertos neste livro e uma explicagao sobre suas utilizagoes.

- Vocé recebera dicas sobre o que ler, conforme seus interesses.

Arvores

Vamos voltar ao exemplo da pesquisa bindria. Quando um usudrio acessa o
Facebook, o Facebook precisa pesquisar, em um longo array, se este nome de
usudrio realmente existe. Como comentado anteriormente, a maneira mais
rapida de realizar uma pesquisa em um array ¢ por meio da execugao de
uma pesquisa bindria. Porém ha um problema: cada vez que um novo
usuario for criado, sera necessario inserir o seu nome de usuario no array,
sendo preciso reordena-lo, pois a pesquisa binaria funciona apenas em
arrays ordenados. Nédo seria bom se fosse possivel inserir o novo nome de
usudrio diretamente no slot correto do array sem que fosse necessario
reordena-lo? Esta ¢ a ideia da estrutura de dados drvore bindria de busca.

Uma arvore binaria de busca se parece com isto:

(rer) e

Separando um né como exemplo, temos que os nos a esquerda dele tém
valores menores, enquanto os nds a direita dele tém valores maiores.

Suponha que vocé esteja procurando Maggie. Para isso, a pesquisa sera
iniciada pelo n6-raiz.

\
a..‘\"a

Maggie vem depois de David, entdo devemos ir para a direita.

ON

Maggie vem antes de Manning, entdo devemos ir para a esquerda.

Encontramos a Maggie! Esta pratica é muito semelhante a executar uma
pesquisa binaria! A procura por um elemento em uma pesquisa binaria tem
tempo de execugdao O(log n), em média, e O(n) no pior caso. A procura em
arrays ordenados tem tempo de execugdo O(log 1) no pior caso, o que pode
passar a impressdo que um array ordenado é mais eficiente. Porém a arvore
bindria de busca é muito mais rdpida para inser¢des e remocdes, em média.

-

ARVORE
ARRAY BINARIA De RUSCA

BUSCA OUoqw) O(Logw)
INSERGAS () () O Legn)
Remogho () (M) O (Log w)

Entretanto a drvore bindria de busca tem algumas desvantagens: nao é
possivel utilizar acesso aleatorio. Isso faz com que seja impossivel dizer, por
exemplo, “Me dé o quinto elemento desta drvore”. Além disso, o bom
desempenho relacionado ao tempo de execu¢do ndo acontece em todos os
casos, mas sim em uma média, e este tempo de execucao é fortemente
dependente da necessidade de a arvore ser balanceada. Imagine que vocé
tenha uma arvore desbalanceada, como a mostrada a seguir.

Vocé percebe como ela esta pendendo para a direita? Esta arvore nao
apresenta um bom desempenho, pois nao esta balanceada. Existem arvores
binarias de busca especiais que se balanceiam automaticamente. Um
exemplo desta arvore é a arvore vermelho-preto (também conhecidas como
arvore rubro-negra).

Entio, quando utilizamos as 4rvores bindrias de busca? As Arvores B, um
tipo especial de arvore binaria, sio comumente usadas para armazenar
dados em bancos de dados.

Se vocé se interessa por bancos de dados ou estruturas de dados mais
avancadas, leia sobre os seguintes itens:

e arvores B

e drvores rubro-negra (red-black tree)
o heaps

« arvores splay (arvores espalhadas)

indices invertidos

A seguir, pode-se observar uma versao simplificada de como uma
ferramenta de busca funciona. Imagine que vocé tenha trés paginas da web
com conteudo simples.

Vamos construir uma tabela hash a partir deste contetudo.
(2
N q
s LA | A C ‘
ADIT| B
NSs | C g

LY

As chaves da tabela hash sao as palavras e os valores informam em qual
pagina cada palavra aparece. Agora, considere que um usuario procura a
palavra oi. Vamos ver em quais paginas esta palavra aparece.

Aha! Ela aparece nas paginas A e B. Assim, vamos mostrar ao usudrio estas
paginas como resultado de sua pesquisa. Suponha agora que o usudrio
pesquisou a palavra Ild. Bom, vocé sabe que esta palavra aparece na pagina A
e na pagina C. Facil, nao? Esta ¢ uma estrutura de dados muito util: uma
hash que mapeia palavras para lugares onde elas aparecem. Esta estrutura de
dados é chamada de indice invertido e é muito usada na construcao de
ferramentas de busca. Se vocé se interessa por ferramentas de busca, este é
um lugar para comegar.

A transformada de Fourier

A transformada de Fourier ¢ um dos raros algoritmos que conseguem ser
brilhantes, elegantes e ter milhares de formas de utilizagdo. A melhor
analogia para explicar a transformada de Fourier vem do Better Explained
(um 6timo website que explica matematica de forma simples): dado um
smoothie (uma espécie de suco de frutas batidas) qualquer, a transformada
de Fourier informara os ingredientes do smoothiel. Em outras palavras,
dada uma musica, a transformada a separara em frequéncias individuais.

Assim, verifica-se que esta simples ideia tem uma ampla utilizagdo. Um
exemplo disso é baseado na ideia de que se vocé consegue separar uma
musica em frequéncias individuais, é possivel aumentar uma frequéncia
especifica desejada. Assim, ¢ possivel aumentar os graves de uma musica e
diminuir seus agudos. A transformada de Fourier ¢ uma 6tima ferramenta
para o processamento de sinais. Além disso, ela pode ser utilizada na
compressao de musicas. Para isto, primeiro a musica é separada em suas
notas individuais. Entdo, a transformada de Fourier informa o quanto
exatamente cada nota contribui para a musica como um todo. Sabendo disso
é possivel eliminar notas que nao sao importantes para a musica. Este é o
modo de funcionamento do formato MP3!

No entanto a musica ndo ¢ o unico tipo de sinal digital. O formato JPG é
outro formato comprimido que funciona da mesma maneira. A

transformada de Fourier também ¢é usada para tentar prever terremotos e
analisar DNA.

Vocé pode usé-la para desenvolver um aplicativo como o Shazam, que
identifica qual musica esta tocando. A transformada de Fourier tem diversas
finalidades, e sdo altas as chances de vocé se deparar com ela.

Algoritmos paralelos

Os préoximos trés topicos tratam de escalabilidade e da manipulagdo de uma
grande quantidade de dados. Antigamente, computadores se tornavam cada
vez mais rapidos. Assim, se vocé queria que o seu algoritmo fosse mais
rapido, era necessario apenas aguardar alguns meses e os computadores se
tornariam mais velozes. Porém atualmente estamos proximos do fim deste
periodo. Em vez disso, notebooks e computadores fornecem diversos
nucleos de processamento. Para que o seu algoritmo se torne mais rapido, é
necessario fazer com que ele seja executado paralelamente, em todos os
nucleos de uma so vez!

Vamos analisar um exemplo simples. O melhor desempenho possivel para
um algoritmo de ordenagdo ¢ aproximadamente O(n log n). Sabemos
também que ndo é possivel ordenar um array em tempo de execugdo O(n), a
menos que seja utilizado um algoritmo paralelo! Ha uma versao paralela do
quicksort que consegue ordenar um array com tempo de execuciao O(n).

Algoritmos paralelos sao dificeis de projetar, além de ser dificil fazer com
que funcionem corretamente e também estimar o incremento de velocidade
que fornecerdo. Entao, se vocé tem dois nucleos no seu notebook em vez de
somente um, isso quase nunca significa que seu algoritmo sera duas vezes
mais rapido. Existem alguns motivos para isso:

o Gerenciamento do paralelismo — Imagine que vocé deva ordenar um array
de 1.000 itens. Como vocé divide esta tarefa entre dois nucleos? Vocé
fornece 500 itens para cada nucleo ordenar e entao une ambos os arrays
ordenados em um grande array? Unir os arrays leva tempo.

e Balanceamento de carga — Suponha que vocé tenha dez tarefas que devam
ser executadas e, portanto, cada nucleo receba cinco tarefas. Porém o

nucleo A recebe todas as tarefas simples e as finaliza em dez segundos,
enquanto o nucleo B recebe todas as tarefas complexas e leva um minuto.
Ou seja, o nucleo A ficou parado durante cinquenta segundos enquanto o
nucleo B esteve fazendo todo o trabalho duro!

Se vocé se interessa pelo aspecto tedrico do desempenho e da escalabilidade,
dé uma olhada em algoritmos paralelos!

MapReduce

Existe um tipo especial de algoritmo paralelo que esta se tornando muito
popular: o algoritmo distribuido. Nao ha problema em executar um
algoritmo paralelo no seu notebook caso vocé necessite de dois a quatro
nucleos, mas o que acontecera se vocé precisar de centenas de nucleos?
Nestas situagoes, é possivel escrever o seu algoritmo para ser executado por
diversas maquinas. O algoritmo MapReduce é um algoritmo distribuido
popular que pode ser usado no framework livre Apache Hadoop.

Por que os algoritmos distribuidos sao uteis?

Considere que vocé tem uma tabela hash com bilhdes ou trilhdes de linhas e
queira executar uma consulta SQL complexa nesta tabela. Nao sera possivel
executar isto no MySQL, pois existem problemas quando o nimero de
linhas chega aos bilhoes. Sendo assim, utilize o MapReduce por intermédio
do Hadoop!

Imagine agora que vocé deve processar uma longa lista de tarefas, em que
cada tarefa leva dez segundos para ser processada, e vocé precisa processar 1
milhao de tarefas como essa. Se vocé tentar fazer isso em apenas uma
maquina, levara meses! Assim, uma opc¢ao seria executa-las em diversas
maquinas, finalizando o processamento em alguns dias.

Algoritmos distribuidos sdo étimos quando vocé tem muito trabalho a ser
feito e quer diminuir o tempo necessario. O MapReduce, em particular, é
baseado em duas ideias simples: a funcao map (mapa) e a fun¢do reduce
(reduzir).

Funcao map

A fungao map é muito simples: ela pega um array e aplica a mesma fungao

para cada item no array. Por exemplo, abaixo estamos dobrando todos os
itens do array:

>>> arrl = [1, 2, 3, 4, 5]
>>> arr2 = map(lambda x: 2 * x, arril)
[2’ 4’ 6, 8’ 10]

Oarr2contém [2, 4, 6, 8, 10] - cada elemento do arr1 foi dobrado!
Dobrar um elemento ¢ uma tarefa bem rdpida, mas imagine que vocé esteja
utilizando uma fungdo que precisa de mais tempo para ser processada.
Observe este pseudocodigo:

>>> arrl = # uma lista de URLs
>>> arr2 = map(download page, arril)
Temos uma lista de URLSs e vocé deseja baixar cada pagina e armazenar o

seu conteudo no in arr2. Isto poderia levar alguns segundos para cada URL.
Se vocé tiver 1.000 URLs, isto levara algumas horas!

Naio seria 6timo ter cem maquinas, sabendo que a fungdo map poderia
dividir automaticamente as tarefas entre todas elas? Desta forma vocé estaria
baixando cem paginas ao mesmo tempo e o trabalho estaria acabado muito
antes! Esta é a ideia por tras da fun¢do “map” do MapReduce.

Func¢ao reduce

A fungio reduce confunde as pessoas algumas vezes, pois a ideia central
desta funcao é “reduzir” uma lista inteira para apenas um item. Com a
fun¢do map vocé vai de um array para outro.

i

1{2]3]4]s]
bl

2[46218

Com a funcdo reduce, vocé transforma um array em um simples item.

B

1121214
N\
15
Aqui esta um exemplo:

>>> arrl = [1, 2, 3, 4, 5]
>>> reduce(lambda x,y: x+y, arrl)
15

Neste exemplo vocé soma todos os elementos do array: 1 + 2 + 3 + 4 +

5 = 15! Nao explicarei a funcao reduce em mais detalhes, pois existem
diversos tutoriais online.

O MapReduce usa dois conceitos simples para executar consultas de dados
em diversas maquinas. Quando vocé tiver um grande conjunto de dados
(bilhoes de linhas), o MapReduce podera fornecer uma resposta em
minutos, enquanto um banco de dados tradicional pode levar horas.

Filtro de Bloom e HyperLoglLog

Imagine que vocé esta no comando do Reddit. Quando alguém posta um
link, vocé quer ver se ele ja nao foi postado antes, pois histérias que ndo
foram postadas antes sdo consideradas mais valiosas. Assim, é preciso
descobrir se este link ja foi postado antes ou nao.

Considere que vocé é a Google e que esteja rastreando paginas da web. Vocé

deseja apenas rastrear uma pagina da web caso ela ndo tenha sido rastreada
antes. Assim, ¢ preciso encontrar uma maneira de saber se esta pagina ja foi
rastreada ou ndo.

Considere este outro exemplo, em que vocé estda no comando do bit.ly, um
encurtador de URLs. Vocé ndo quer redirecionar os usudrios para sites
maliciosos. Vocé tem um conjunto de URLs que sdo consideradas
maliciosas. Agora, ¢ preciso descobrir uma maneira de saber se vocé esta
redirecionando o usudrio para uma URL daquele conjunto.

Todos estes exemplos sdo baseados no mesmo problema: vocé tem um
conjunto muito grande.

Agora, vocé tem um novo item e quer conferir se este item pertence ao
conjunto. Isso poderia ser feito rapidamente com uma hash. Por exemplo,
imagine que a Google tem uma hash enorme em que as chaves sao todas as
paginas da web que ja foram rastreadas.

f‘;;‘ﬁ mw‘ Sln ‘

&dit.ig SiM \

Vocé quer conferir se adit.io ja foi rastreada.

adit.io é uma chave da hash, entao vocé ja rastreou este site. O tempo
médio de busca para uma tabela hash é O(1). adit.io esta na hash, entdo
este site ja foi rastreado. Vocé o encontrou em tempo constante. Muito bom!

Acontece que esta hash precisa ser enorme. A Google indexa trilhdes de
paginas da web, por isso, se esta hash contiver todas as URLs indexadas,
ocupara muito espago. O Reddit e o bit.ly tém o mesmo problema de espaco.
Quando se lida com tantos dados, é preciso ser criativo!

Filtros de Bloom

Os filtros de Bloom oferecem uma solugao. Eles sao estruturas de dados
probabilisticas que fornecem uma resposta que pode estar errada, mas que
provavelmente estara correta. Em vez de perguntar a uma hash, é possivel
perguntar a um filtro de bloom se a URL ja foi rastreada antes. Uma tabela
hash forneceria um resultado exato, mas um filtro de bloom fornecera um
resultado que provavelmente estara correto:

» Falsos positivos sdo possiveis. A Google podera dizer “Vocé ja rastreou
este site’, mesmo que isso ndo seja verdade.

» Falsos negativos ndo sao possiveis. Caso o filtro de bloom diga “Vocé
ainda ndo rastreou este site”, entdo vocé definitivamente nao o rastreou.

Os filtros de bloom sdo 6timos porque eles usam pouco espago. Uma tabela
hash teria de armazenar cada URL rastreada pela Google, enquanto um
filtro de bloom nao precisa. Eles sao 6timos pois vocé ndo precisa de uma
resposta exata em todos os exemplos fornecidos. O bit.ly pode dizer “Nos
achamos que este site é malicioso, entdo tenha cuidado”.

HyperLoglLog

No mesmo estilo, hd outro algoritmo, chamado HyperLogLog. Imagine que
a Google deseja contabilizar o nimero de pesquisas unicas realizadas por
seus usuarios, ou suponha que a Amazon queira contar o numero de itens
unicos que os usuarios olharam em um dia. Responder a estas questdes
requer bastante espaco! Com a Google, seria necessario manter um registro

de todas as pesquisas unicas. Quando um usudrio pesquisasse algo, seria
preciso checar se esta pesquisa ja se encontrava no registro. Caso contrario,
ela seria adicionada ao registro. Mesmo para um unico dia este registro seria
massivo!

O HyperLogLog aproxima o nimero de elementos tinicos em um conjunto.
Assim como o filtro de bloom, ele ndo fornecera uma resposta exata, mas se
aproximara muito desta, usando apenas uma fracao da memoria de que a
tarefa necessitaria se fosse implementada da maneira tradicional.

Se vocé tem muitos dados e fica satisfeito com uma resposta aproximada, dé
uma olhada nos algoritmos probabilisticos!

Algoritmos SHA

Vocé se lembra da técnica de hashing, do Capitulo 52 Apenas para
recapitular, suponha que vocé tenha uma chave e queira colocar o valor
associado em um array.

E"D'ITT_T JTIILIIT I I LI T T T T T]

17 13 14 15 16 47 1% 19 20 21 z2 23 24 25

Vocé usa a fungdo hash para informa-lo sobre o espaco no qual o valor deve
ser inserido

Ao Bs vio
aquf AUl 15 vio
l f Jcﬁ vAo ‘fs w-u “WI

CLCT LT T T LTI T I LT

3 9 40 §1 12 13 14 15 16 17 1% 19 20 21 z£2 23 24 25

E vocé coloca o valor naquele espaco.

0.6t

AMETIXAS j

Isso permite que vocé pesquise o array em tempo constante. Quando vocé
quiser saber o valor de uma chave, podera utilizar a fun¢ao hash novamente,
e ela retornara o resultado em tempo de execu¢ao O(1).

Neste caso, vocé deseja que a func¢ao hash retorne uma boa distribuicao.
Assim, a fung¢do hash recebe uma string e retorna o numero do slot para esta
string.

Comparando arquivos

Outra fungdo hash ¢ uma fungdo de algoritmo de hash seguro (do inglés
Secure Hash Algorithm - SHA). Dada uma string, o SHA retorna uma hash
para esta string.

.{‘D ﬂ:‘, = 7_(‘.{:2.4'c:|.]:>___

A terminologia pode parecer um pouco confusa neste ponto. O SHA é uma
fungdo hash. Ele gera um hash, que é apenas uma string curta. A fungao
hash faz a ligacdo entre string e indice de arrays, enquanto o SHA faz a
ligacdo entre string e string.

A fungdo SHA gera uma string diferente para cada string de entrada.
Lk
“ola! > 2cf24db .

“algoritme” = Bbleblec..
“serhas’ :.> Se 334 29 ...

Nota
Strings SHA sdo mais longas, mas elas foram cortadas aqui.

Vocé pode utilizar o SHA para verificar se dois arquivos sdo iguais. Isso é
util quando vocé tem arquivos muito grandes. Suponha que vocé tenha um
arquivo de 4 GB e queira checar se o seu amigo tem este mesmo arquivo.
Vocé ndo precisara tentar enviar este arquivo por e-mail. Em vez disso, vocés
dois podem calcular a hash SHA e compara-la.

0 SEU 0 ARQUIVO
ARQUIVO DELE
J
2t e2patt
A SUA HASH A HASH DELE

N MESMA HASH, VW
MESMO ARQUIVO!

Verificando senhas

O SHA ¢ util também quando vocé quer comparar string sem revelar a
string original. Por exemplo, imagine que o Gmail foi hackeado e o atacante
roubou todas as senhas! O seu password esta por ai, para qualquer um ver?
Nao, ele ndo estd. A Google ndo armazena a senha original, mas apenas a
hash SHA da senha! Quando vocé digita a sua senha, a Google verifica a
hash do que vocé digitou e a compara com o que esta no banco de dados.

R
Lﬁuima‘sm] —_> \/

lo.dit ‘Emili HASH COMBINA,
SENHA CORRETA!

8 bc123"3. 6 cald . -

SUA HASH DA
SENHA SENHA COMPARA COM A

HASH ARMATENADA

NO BAMNCO DE DADOS

Assim, a comparacao é feita apenas entre as hashes e a sua senha nao precisa
ser armazenada! O SHA ¢é utilizado amplamente para criar hash de senhas,
como neste caso. Ele funciona como uma hash de apenas uma dire¢dao onde
vocé pode gerar uma hash a partir de uma string.

Labe123 > 6eal3)

No entanto nao ¢ possivel descobrir a string original a partir da hash.

? € 6cal3d

Isso significa que, caso um hacker consiga todas as hashes SHA do Gmail,
ele ndo conseguira converté-las para a forma das senhas originas! Ou seja,
vocé pode converter uma senha em uma hash, mas nao consegue fazer o
processo inverso.

Os algoritmos SHA sdo, na verdade, uma familia de algoritmos: SHA-0,
SHA-1, SHA-2 e SHA-3. No periodo em que este livro foi escrito, SHA-0 e
SHA-1 tinham algumas fraquezas. Caso vocé esteja utilizando SHA em
algum algoritmo para criar hash de senhas, use SHA-2 ou SHA-3. A melhor
escolha para hash de senhas, atualmente, é berypt (porém nada é a prova de

balas).

Hash sensitivo local

O algoritmo SHA tem outra caracteristica importante: ele ¢ localmente
insensitivo. Imagine que vocé tenha uma string e que vocé calcule uma hash
para ela.

wdo — cd 6357

Se vocé modificar apenas um caractere e recalcular a hash, ela sera
totalmente diferente!

mae => 2322 do.

Isto é bom porque ndo sera possivel comparar as hashes para verificar se a
senha esta perto de ser quebrada.

Porém as vezes vocé quer o contrario: uma funcao hash localmente
sensitiva. E ai que a Simhash entra. Caso vocé faca uma pequena mudanca
na string, a Simhash criara uma hash que é levemente diferente. Isto permite
que vocé compare ambas as hashes geradas para verificar o quao

semelhantes elas sdo, o que é muito util!

o A Google utiliza Simhash para detectar duplicatas enquanto rastreia a
web.

« Um professor poderia utilizar Simhash para verificar se um estudante
copiou um trabalho da internet.

o O Scribd permite que os usudrios facam upload de documentos e livros
para compartilhar com outros. Porém o Scribd nao deseja que usuarios
fagam upload de material com direitos autorais. Assim, o site poderia
utilizar Simhash para verificar se o upload é semelhante a um dos livros
do Harry Potter, por exemplo, e o rejeitar automaticamente caso fosse.

O Simbhash ¢ util quando vocé quer verificar itens similares.

Troca de chaves de Diffie-Hellman

A troca de chaves do algoritmo de Diffie-Hellman merece uma mengao, pois
ela resolve um problema muito antigo de uma maneira elegante. Como vocé
encriptaria uma mensagem para que ela pudesse ser lida apenas pelo
destinatario?

A maneira mais simples de fazer isto é por intermédio de um cédigo secreto,
como por exemplo a = 1, b = 2 e assim por diante. Entdo, se eu lhe enviasse a
mensagem “15,12,1%, vocé poderia traduzi-la para “o,l,a”>. Porém, para que
isso funcione, n6s dois devemos concordar no cédigo secreto utilizado. Nao
podemos concordar via e-mail, visto que alguém pode hackear o seu e-mail,
descobrir a cifra e decodificar nossas mensagens. Mesmo que o encontro
seja feito pessoalmente, alguém ainda pode descobrir a cifra, pois ela nao é
complicada. Assim, devemos muda-la diariamente. Porém teremos que nos
encontrar diariamente para modifica-la todos os dias!

E mesmo que conseguissemos modifica-la diariamente, uma cifra tao
simples quanto essa é facilmente quebravel com ataques de forga bruta.
Considere que eu enviei a mensagem “9,6,13,13,16 24,16,19,13,5”. Vou
chutar que a cifra utilizada seja a = 1, b = 2, e assim por diante.

2 S S TR A A

"‘16\3BI6 24 |6 \4 13 §
v vy
ifmm‘) *TSwe

Isso ndo faz sentido. Vamos tentar com a = 2, b = 3, e por assim diante.

'Cie\?,\zte 24 |6 \4 \3 §
AT R A A A A R A A)

heLLo w o v L d

Funcionou! Uma cifra tdo simples quanto essa ¢ facil de ser quebrada. Os
alemaes utilizaram cifras muito mais complexas na Segunda Guerra
Mundial, mas, mesmo assim, elas foram quebradas. A troca de chaves Diffie-
Hellman resolve ambos os problemas:

« Ambas as partes ndo precisam saber da cifra. Assim, ndo precisamos nos
encontrar para combinar que cifra utilizar.

 As mensagens encriptadas sdo extremamente dificeis de ser decodificadas.

A troca de chaves Diffie-Hellman contém duas chaves: uma chave publica e
uma chave privada. A chave publica é exatamente isto: publica. Vocé pode
divulga-la no seu website, enviar por e-mail para amigos ou fazer o que vocé
quiser com ela, pois ndo é necessario escondé-la. Quando alguém quiser
enviar uma mensagem, ele a encripta usando a chave publica. Uma
mensagem encriptada pode ser decodificada apenas com a utilizacao de
uma chave privada. Assim, enquanto vocé for a Unica pessoa com a chave
privada, somente vocé sera capaz de decodificar as mensagens!

O algoritmo de Diffie-Hellman ainda é usado na prética, em conjunto com o
seu sucessor, o RSA. Se vocé se interessar por criptografia, o algoritmo de
Diffie-Hellman é um lugar para comegar: ele ¢ elegante e nao muito
complexo de seguir.

Programacao linear

Guardei o melhor para o final. Programacao linear ¢ uma das coisas mais
legais que conheco.

A programacao linear ¢ usada para maximizar algo em relacao a um limite.
Por exemplo, suponha que sua companhia faz dois produtos: camisetas e
bolsas. Camisetas precisam de 1 metro de tecido e cinco botdes, enquanto
bolsas precisam de 2 metros de tecido e dois botdes. Vocé tem 11 metros de
tecido e vinte botdes. O seu lucro é de R$ 2 por camiseta e de R$ 3 por bolsa.
Quantas camisetas e bolsas vocé deve fabricar para maximizar o seu lucro?

Neste exemplo vocé estd tentando maximizar o lucro, enquanto seus limites
sao a quantidade de material disponivel.

Outro exemplo: vocé é um politico e quer maximizar o total de votos que
receberd. A sua pesquisa informou que leva em torno de uma hora de
trabalho (marketing, pesquisa e assim por diante) para conseguir o voto de
um morador de San Francisco, enquanto levam 1,5 hora para conseguir o
voto de um morador de Chicago. Vocé precisa de, pelo menos, 500
moradores de San Francisco e de 300 moradores de Chicago e, para isto,
vocé tem 50 dias. O custo para conseguir o voto de um morador de San
Francisco ¢ de R$ 2, enquanto para um morador de Chicago ¢ de R$ 1. O
seu orcamento total é R$ 1.500. Qual é o nimero de votos maximo que pode
conseguir (San Francisco + Chicago)?

Aqui vocé esta tentando maximizar votos, considerando como limites o
tempo e o dinheiro.

Vocé pode estar pensando “Vocé falou sobre varios topicos de otimizacao
neste livro. Qual é a relagdo deles com a programacao linear?”. Todos os
algoritmos de grafos podem ser feitos por meio de programacao linear. A
programacao linear é um framework muito mais geral, enquanto o
problema de grafos é apenas um subconjunto dela. Espero que a sua mente
tenha explodido com esta revelacao!

A programacao linear utiliza o algoritmo Simplex, que é um algoritmo
complexo. Por este motivo ndo o inclui neste livro. Se vocé se interessa por
otimizacdo, dé uma olhada em programacao linear!

Epilogo

Espero que este breve passeio pelos dez algoritmos tenha mostrado como
ainda temos coisas para descobrir. Acredito que a melhor maneira de
aprender ¢ encontrar algo do seu interesse e entdo mergulhar de cabega, pois
este livro forneceu uma fundacao solida para fazer exatamente isso.

1 Kalid, “An Interactive Guide to the Fourier Transform”, Better Explained,
http://mng.bx/874X.

Respostas dos exercicios

P"J\/‘

CAPITULO 1

1.1 Suponha que vocé tenha uma lista com 128 nomes e esteja fazendo uma
pesquisa binaria. Qual é o numero méaximo de etapas pelas quais vocé
passaria para encontrar o nome desejado?

Resposta: 7.

1.2 Suponha que vocé duplique o tamanho da lista. Qual é o nimero
maximo de etapas agora?

Resposta: 8.

1.3 Vocé tem um nome e deseja encontrar o numero de telefone para esse
nome em uma agenda telefonica.

Resposta: O(log n).

1.4 Vocé tem um numero de telefone e deseja encontrar o dono dele em uma
agenda telefonica. (Dica: Vocé tem de procurar pela agenda inteira!)

Resposta: O(n).

1.5 Vocé deseja ler o nimero de cada pessoa da agenda telefonica.

Resposta: O(n).

1.6 Vocé deseja ler os nimeros apenas dos nomes que comecam com A.

Resposta: O(n). Vocé pode pensar: “Sé estou fazendo isso para 1 dentre 26
caracteres, portanto o tempo de execucdo deve ser O(n/26).” Uma regra
simples € a de ignorar nimeros que sao somados, subtraidos,
multiplicados ou divididos. Nenhum desses sdo tempos de execugdo Big
O: O(n + 26), O(n - 26), O(n * 26), O(n / 26). Eles sdao todos o mesmo
que O(n)! Por qué? Se vocé esta com duvidas, va para “Notagao Big O
revisada’, no Capitulo 4, e leia a parte sobre constantes na notagao Big O
(uma constante é apenas um numero; 26 era a constante desta questao).

CAPITULO 2

2.1 Suponha que vocé esteja criando um aplicativo para acompanhar as suas
finangas.

| 1. COMPRAS
2. CINEMA

3. MENSALIDADE
DO SFBC

Todos os dias vocé escreve tudo o que gastou e onde. No final do més, vocé
revisa os seus gastos e resume o quanto gastou. Logo, vocé tem um monte
de inser¢des e poucas leituras. Vocé deve usar um array ou uma lista para
implementar este aplicativo?

Resposta: Neste caso, vocé estd adicionando despesas na lista todos os dias e
lendo todas as despesas uma vez por més. Arrays tém leitura rapida, mas
insercao lenta. Listas encadeadas tém leituras lentas e rapidas insercoes.
Como vocé inserira mais vezes do que lerd, faz mais sentido usar uma

lista encadeada. Além disso, listas encadeadas tém leitura lenta somente
quando vocé acessa elementos aleatorios da lista. Como estara lendo
todos os elementos da lista, a lista encadeada tera também uma boa
velocidade de leitura. Portanto, uma lista encadeada é uma boa solu¢ao
para este problema.

2.2 Suponha que vocé esteja criando um aplicativo para anotar os pedidos
dos clientes em um restaurante. Seu aplicativo precisa de uma lista de
pedidos. Os garcons adicionam os pedidos a essa lista e os chefes retiram
os pedidos da lista. Funciona como uma fila. Os gar¢ons colocam os
pedidos no final da fila e os chefes retiram os pedidos do comeco dela
para cozinhd-los.

>

J\Y%“;/] U S

— LISTA DE PEDIDOS ~

GARGONS ADICTONAM 0 CHEF RETIRA
PEDIDOS MO PEDIDOS Do Infclo
FINAL DA FILA b4 FILA

Vocé utilizaria um array ou lista encadeada para implementar essa lista?
(Dica: Listas encadeadas sao boas para inser¢des/eliminagdes e arrays sao
bons para acesso aleatorio. O que vai fazer nesse caso?)

Resposta: Uma lista encadeada. Muitas inser¢des estdo ocorrendo (gargons
adicionando ordens), sendo essa uma das vantagens da lista encadeada.
Vocé ndo precisa pesquisar ou ter acesso aleatdrio (nisso os arrays sao
bons), pois o chef sempre pega a primeira ordem da fila.

2.3 Vamos analisar um experimento. Imagine que o Facebook guarde uma
lista de usudrios. Quando alguém tenta acessar o Facebook, uma busca ¢é
feita pelo nome de usudrio. Se o nome da pessoa esta na lista, ela pode
continuar o acesso. As pessoas acessam o Facebook com muita
frequéncia, entdo existem muitas buscas nessa lista. Presuma que o
Facebook use a pesquisa bindria para procurar um nome na lista. A
pesquisa bindria precisa de acesso aleatorio — vocé precisa ser capaz de

acessar o meio da lista de nomes instantaneamente. Sabendo disso, vocé
implementaria essa lista como um array ou uma lista encadeada?

Resposta: Um array ordenado. Arrays fornecem acesso aleatorio, entdo vocé
pode pegar um elemento do meio do array instantaneamente. Isso ndo é
possivel com listas encadeadas. Para acessar o elemento central de uma
lista encadeada, vocé deve iniciar com o primeiro elemento e seguir por
todos os links até o elemento central.

2.4 As pessoas se inscrevem no Facebook com muita frequéncia também.
Suponha que vocé decida usar um array para armazenar a lista de
usuarios. Quais as desvantagens de um array em relagao as inser¢des? Em
particular, imagine que vocé esteja usando a pesquisa binaria para buscar
os logins. O que acontece quando vocé adiciona novos usuarios em um
array?

Resposta: Inser¢des em arrays sdo lentas. Além disso, se vocé estiver
utilizando a pesquisa bindria para procurar os nomes de usuario, o array
precisara estar ordenado. Suponha que alguém chamado Adit B se
registre no Facebook. O nome dele serd inserido no final do array. Assim,
vocé precisa ordenar o array cada vez que um nome for inserido!

2.5 Na verdade, o Facebook nao usa nem arrays nem listas encadeadas para
armazenar informagdes. Vamos considerar uma estrutura de dados
hibrida: um array de listas encadeadas. Vocé tem um array com 26 slots.
Cada slot aponta para uma lista encadeada. Por exemplo, o primeiro slot
do array aponta para uma lista encadeada que contém todos os usuarios
que come¢am com a letra A. O segundo slot aponta para a lista
encadeada que contém todos os usuarios que comecam com a letra B, e
assim por diante.

R — LISTA ENCADEADA COM
g4 by "ADIT" “ADA m 05 NOMES DE USUARTO
o7 A QUE INICIAM LETRA A"

17 "BoR" "BE™ "BREMN BA" I 3—9 B MOMES DE JSUARTO QUE
INICTAM cOM A LETRA "B
17 epr” “cony' l “Cprr .
—_— e .y
UM ARRAY

Suponha que o Adit B se inscreva no Facebook e vocé queira adiciona-lo a
lista. Vocé vai ao slot 1 do array, a seguir para a lista encadeada do slot 1,
e adiciona Adit B no final. Agora, suponha que vocé queira procurar o
Zakhir H. Vocé vai ao slot 26, que aponta para a lista encadeada de todos

os nomes comecados em Z. Entdo, procura a lista até encontrar o Zakhir
H.

Compare esta estrutura hibrida com arrays e listas encadeadas. E mais lento
ou mais rapido fazer insercoes e eliminacdes nesse caso? Vocé nao precisa
responder dando o tempo de execugdo Big(O), apenas diga se a nova
estrutura de dados é mais rapida ou mais lenta do que os arrays e as listas
encadeadas.

Resposta: Para buscas — mais lenta do que arrays, mais rapida do que listas
encadeadas. Para inser¢des — mais rapida do que arrays, mesmo tempo
que as listas encadeadas. Portanto é mais lenta para buscas que os arrays,
porém mais rapida ou igual as listas encadeadas para tudo. Falaremos
sobre outra estrutura de dados hibridos chamada tabela hash depois. Isto
deve dar uma ideia sobre como é possivel construir estruturas de dados
mais complexas a partir das estruturas mais simples.

Entdo, o que o Facebook realmente utiliza? Provavelmente uma duzia de
diferentes bancos de dados com diferentes estruturas por tras deles, como
tabelas hash, arvores B e outras. Os arrays e as listas encadeadas sdo os
blocos fundamentais para estruturas de dados mais complexas.

CAPITULO 3

3.1 Suponha que eu fornega uma pilha de chamada como esta:

SAUDA 2
NOME: | mAGGIe

SAUDA

Quais informagdes vocé pode retirar baseando-se apenas nesta pilha de
chamada?

Resposta: Aqui estdo algumas coisas que vocé poderia me dizer:

maggie.

o A fungdo sauda ¢é chamada primeiro, com nome
« Entdo a funcado sauda chama sauda2, com nome = maggie.

o Neste ponto, a fun¢do greet estda em um estado incompleto e
suspenso.
o A atual fungdo de chamada ¢ a fungdo sauda2.

o Apos esta funcdo de chamada ser finalizada, a funcao sauda sera
retomada.

3.2 Suponha que vocé acidentalmente escreva uma fungao recursiva que
fique executando infinitamente. Como vocé viu, seu computador aloca
memoria na pilha para cada chamada de fung¢do. O que acontece com a
pilha quando a fungdo recursiva fica executando infinitamente?

Resposta: A pilha cresce eternamente. Cada programa tem uma limitada
quantidade de espago na pilha de chamada. Quando o seu programa fica
sem espac¢o (o que eventualmente acontece), ele é finalizado com um erro

de overflow (estouro) da pilha.

CAPITULO 4

4.1 Escreva o codigo para a fungao sum, vista anteriormente.

Resposta:

def soma(lista):
if lista == []:
return 0
return lista[0] + soma(lista[1:])

4.2 Escreva uma funcio recursiva que conte o numero de itens em uma lista.
Resposta:
def conta(lista):
if lista == []:
return 0
return 1 + conta(lista[1:])

4.3 Encontre o valor mais alto em uma lista.
Resposta
def maximo(lista):
if len(lista) == 2:
return lista[0] if lista[0] > lista[1] else lista[1]
sub_max = maximo(lista[1:])
return lista[0] if lista[0] > sub_max else sub_max

4.4 Vocé se lembra da pesquisa binaria do Capitulo 1? Ela também ¢é um
algoritmo do tipo dividir para conquistar. Vocé consegue determinar o
caso-base e o caso recursivo para a pesquisa bindria?

Resposta: O caso-base para a pesquisa bindria é um array com um item. Se o
item que vocé esta procurando combina com o item presente no array,
vocé o encontrou! Caso contrério, ele ndo esta no array:.

No caso recursivo para a pesquisa bindria, vocé divide o array pela metade,
joga fora uma metade e executa uma pesquisa bindria na outra metade.

Quanto tempo levaria, em notagdo Big O, para completar cada uma dessas
operagoes?

4.5 Imprimir o valor de cada elemento em um array.

Resposta: O(n)

4.6 Duplicar o valor de cada elemento em um array.

Resposta: O(n)

4.7 Duplicar o valor apenas do primeiro elemento do array.

Resposta: O(1)

4.8 Criar uma tabela de multiplicacdo com todos os elementos do array.
Assim, caso o seu array seja [2, 3, 7, 8, 10], vocé primeiro multiplicara
cada elemento por 2. Depois, multiplicara cada elemento por 3 e entdo

por 7, e assim por diante.

Resposta: O(n?)

CAPITULO 5

Quais destas fun¢des hash sao consistentes?
51 f(x) =10

@ Retorna “1” para qualquer entrada

Resposta: Consistente.
5.2 f(x) = rand() ®
@ Retorna um numero aleatério a cada execucio.

Resposta: Inconsistente.
5.3 f(x) = proximo_espaco_vazio() ©®
O Retorna o indice do préximo espaco livre da tabela hash.
Resposta: Inconsistente.
54 f(x) = len(x) O
O Usa o comprimento da string como indice.
Resposta: Consistente.
Suponha que tenha estas quatro fung¢des hash que operam com strings:
A. Retorne “1” para qualquer entrada.
B. Utilize o comprimento da string como o indice.

C. Utilize o primeiro caractere da string como indice. Assim, todas as
strings que iniciam com a letra a sdo hasheadas juntas e assim por diante.

D. Mapeie cada letra para um numero primo:a=2,b=3,c=5,d=7,e=
11 e assim por diante. Para uma string, a fung¢do hash ¢ a soma de todos os
caracteres-modulo conforme o tamanho da hash. Se o tamanho de sua
hash for 10, por exemplo, e a string for “bag”, o indice é (3 + 2 + 17) % 10
=22 % 10 = 2.

Para cada um destes exemplos, qual funcao hash fornecera uma boa
distribuicao? Assuma o tamanho da tabela hash como sendo dez espagos.

5.5 Uma lista telef6nica, onde as chaves sio os nomes e os valores sao os
numeros telefonicos. Os nomes sdo os seguintes: Esther, Ben, Bob e Dan.

Resposta: As fungdes hash C e D fornecerdao uma boa distribuigdo.

5.6 Um mapeamento do tamanho de baterias e sua devida poténcia. Os
tamanhos sao A, AA, AAA e AAAA.

Resposta: As fungdes hash B e D fornecerao uma boa distribuicao.

5.7 Um mapeamento de titulos de livros e autores. Os titulos sio Maus, Fun
Home e Watchmen.

Resposta: As fungdes hash B, C e D fornecerao uma boa distribuicéo.

CAPITULO 6

Execute o algoritmo de pesquisa em largura em cada um desses grafos para
encontrar a solugao.

6.1 Encontre o menor caminho do inicio ao fim.

FIm

©

infelo

O
Resposta: O caminho mais curto tem comprimento de 2.

6.2 Encontre o menor caminho de “jato” até “gato”.

Infelo
Resposta: O caminho mais curto tem comprimento de 2.

6.3 Esse ¢ um pequeno grafo da minha rotina matinal.

TOMAR CAFE
DA MANHA

Para essas trés listas, marque se elas sdo validas ou invalidas.

A. B. o

| . AcorRDAR |. acorvar |. Tomar BaNKO
2 TOMAR BANKO 2 .ES5COVAR 05 DENTES 2. ACORDAR

4. ESCOVAR 05 DENTES 4 . TOMAR BANHO A TOMAR CAFE DA MANYA

Respostas: A — Invalida; B - Valida; C - Invalida.

6.4 Aqui temos um grafo maior. Faga uma lista valida para ele.

PRATICAR
EXERCICIO

TOMAR CAFE
DA MANKA

ESCOVAR

ACORDAR 05 DENTES

EMBRULHAR
O LAMNCHE

Resposta: 1 — Acordar; 2 — Praticar exercicio; 3 - Tomar banho; 4 — Escovar

os dentes; 5 - Trocar de roupa; 6 - Embrulhar o lanche; 7 - Tomar café da
manha.

6.5 Quais desses grafos também sao arvores?

A B, o

Respostas: A — Arvore; B — Nao é uma drvore; C — Arvore. O ultimo exemplo
¢ uma arvore na lateral. Arvores sio um subconjunto dos grafos. Assim,

uma arvore sempre sera um grafo, mas um grafo pode ou nao ser uma
arvore.

CAPITULO 7

7.1 Em cada um desses grafos, qual o peso do caminho minimo do inicio ao
fim?

|

Respostas: A - 8; B - 60; C — Pergunta capciosa. Nenhum caminho minimo ¢é
possivel (ciclo do peso negativo).

CAPITULO 8

8.1 Vocé trabalha para uma empresa de mobilias e tem de enviar os mdveis
para todo o pais. E necessario encher seu caminhio com caixas, e todas as
caixas sdo de tamanhos diferentes. Vocé esta tentando maximizar o
espaco que consegue usar em cada caminhdo. Como escolheria as caixas
para maximizar o espago? Proponha uma solugdo gulosa. Ela lhe dara a

solucdo ideal?

Resposta: Uma estratégia gulosa seria escolher a maior caixa que cabe no
espaco restante, repetindo até que ndo seja mais possivel colocar
nenhuma caixa. Nao, a solucao ideal ndo serd alcan¢ada.

8.2 Vocé esta viajando para a Europa e tem sete dias para visitar o maior
numero de lugares. Para cada lugar, vocé atribui um valor (o quanto
deseja ver) e estima quanto tempo demora. Como maximizar o total de
pontos (passar por todos os lugares que vocé realmente quer ver) durante
sua estadia? Proponha uma solugdo gulosa. Ela lhe dara a solugao ideal?

Resposta: Continue escolhendo a atividade com a maior pontuagdo possivel
que vocé ainda consegue fazer com o tempo que sobra. Pare quando néo
houver mais tempo para nenhuma atividade. Nao, isto ndo lhe dard a
solucao ideal.

Para cada um desses algoritmos, diga se ele é um algoritmo guloso ou nao.
8.3 Quicksort

Resposta: Nao.

8.4 Pesquisa em largura

Resposta: Sim.

8.5 Algoritmo de Dijkstra

Resposta: Sim.

8.6 Um carteiro precisa entregar correspondéncias para 20 casas. Ele precisa
encontrar a rota mais curta que passe por todas as 20 casas. Esse ¢ um
problema NP-completo?

Resposta: Sim.

8.7 Encontrar o maior clique em um conjunto de pessoas (um clique, para
este exemplo, € um conjunto de pessoas em que todos se conhecem). Isso
¢ um problema NP-completo?

Resposta: Sim.

8.8 Vocé esta fazendo um mapa dos EUA e precisa colorir estados adjacentes
com cores diferentes. Para isso, deve encontrar o nimero minimo de
cores para que nao existam dois estados adjacentes com a mesma cor. Isso
¢ um problema NP-completo?

Resposta: Sim.

CAPITULO 9

9.1 Imagine que vocé consiga roubar outro item: um MP3 player. Ele pesa 1
quilo e vale R$ 1.000. Vocé deveria rouba-lo?

Resposta: Sim. Entao serial possivel roubar o MP3, o iPhone e o violao, itens
estes que valem um total de R$ 4.500.

9.2 Suponha que vocé esteja indo acampar e que sua mochila tenha
capacidade para 6 quilos. Sendo assim, vocé pode escolher entre os itens
abaixo para levar. Cada item tem um valor, e quanto mais alto este valor,
mais importante o item é:

o Agua, 3 kg, 10

o Livro, 1 kg, 3

« Comida, 2 kg, 9

« Casaco, 2 kg, 5

« Camera, 1 kg, 6
Qual € o conjunto de itens ideal que deve ser levado para o acampamento?
Resposta: Vocé deveria levar dgua, comida e a camera.

9.3 Desenhe e preencha uma tabela para calcular a maior substring comum
entre blue (azul, em inglés) e clues (pistas, em inglés).

Resposta:
C L uE g

B O JO olo
L?TQ olo]

U_(-JJ_HO 2. QQ:
E{ofo]o[3]o]

CAPITULO 10

10.1 No exemplo do Netflix, calculou-se a distdncia entre dois usuarios
diferentes utilizando a formula da distancia, mas nem todos os usuarios
avaliam filmes da mesma maneira. Suponha que vocé tenha dois
usudrios, Yogi e Pinky, os quais tém gostos similares. Porém Yogi avalia
qualquer filme que ele goste com 5, enquanto Pinky é mais seletivo e
reserva o 5 somente para os melhores filmes. Eles tém gostos bem
similares, mas de acordo com o algoritmo da distancia, eles ndo sao
vizinhos. Como vocé poderia levar em conta o sistema de avalia¢do
diferente deles?

Resposta: Vocé poderia usar algo chamado normalizagdo. Vocé observa as
avaliacoes médias para cada pessoa e usa este valor como escala para as
avaliacoes. Por exemplo, deve ter percebido que o valor médio das
avaliagdes de Pinky ¢ 3, enquanto o valor médio de Yogi ¢ 3,5. Portanto
vocé aumenta um pouco as avaliacdes de Pinky até que a sua média
também seja 3,5. Ai entdo é possivel comparar as avaliagdes na mesma
escala.

10.2 Suponha que o Netflix nomeie um grupo de “influenciadores”. Por
exemplo, Quentin Tarantino e Wes Anderson sdo influenciadores no
Netflix, portanto as avaliacoes deles contam mais do que as de um
usuario comum. Como vocé poderia modificar o sistema de
recomendagdes de forma que as avaliagdes dos influenciadores tivessem
um peso maior?

Resposta: Vocé poderia dar maior peso para as avaliagdes dos
influenciadores usando o algoritmo dos k-vizinhos mais préximos.
Imagine que vocé tenha trés vizinhos: Joe, Dave e Wes Anderson (um
influenciador). Eles avaliaram Clube dos Pilantras como 3, 4 e 5,
respectivamente. Em vez de calcular a média das avaliagdes (3 +4 + 5/ 3
= 4 estrelas), vocé poderia dar maior peso para a avaliacdo de Wes
Anderson: 3+4+5+5+5/5 =44 estrelas.

10.3 O Netflix tem milhées de usudrios, e no exemplo anterior
consideraram-se os cinco vizinhos mais proximos ao criar-se o sistema de
recomendacdes. Esse numero é baixo demais? Ou alto demais?

Resposta: Baixo demais. Se vocé olhar para menos vizinhos, havera uma
chance maior de que o resultado seja tendencioso. Uma boa regra ¢ a

seguinte: se vocé tem N usudrios, deve considerar sqrt(N) vizinhos.

Loiane Groner

Estruturas de dados
e algoritmos com
JavaScript

novatec

Estruturas de dados e algoritmos com
JavaScript

Groner, Loiane
0788575227282
408 paginas

Compre agora e leia

Uma estrutura de dados € uma maneira particular de
organizar dados em um computador com o intuito de
usar os recursos de modo eficaz. As estruturas de
dados e os algoritmos sao a base de todas as
solucdes para qualquer problema de programacao.
Com este livro, vocé aprendera a escrever codigos
complexos e eficazes usando os recursos mais
recentes da ES 2017. O livro Estruturas de dados e
algoritmos com JavaScript comeca abordando o
basico sobre JavaScript e apresenta a ECMAScript
2017, antes de passar gradualmente para as
estruturas de dados mais importantes, como arrays,
filas, pilhas e listas ligadas. Vocé adquirird um
conhecimento profundo sobre como as tabelas hash
e as estruturas de dados para conjuntos funcionam,
assim como de que modo as arvores e 0s mapas
hash podem ser usados para buscar arquivos em um
disco rigido ou para representar um banco de dados.
Este livro serve como um caminho para vocé
mergulhar mais fundo no JavaScript. Vocé também

http://www.mynextread.de/redirect/Amazon+%28BR%29/3036000/9788575226629/9788575227282/560ec6fa0050fcb564fefadf34be3b55

terd uma melhor compreensao de como e por que 0s
grafos - uma das estruturas de dados mais
complexas que ha - sao amplamente usados em
sistemas de navegacao por GPS e em redes sociais.
Proximo ao final do livro, vocé descobrira como todas
as teorias apresentadas podem ser aplicadas para
solucionar problemas do mundo real, trabalhando
com as proéprias redes de computador e com
pesquisas no Facebook. Vocé aprendera a: ¢ declarar,
inicializar, adicionar e remover itens de arrays, pilhas
e filas; ¢ criar e usar listas ligadas, duplamente
ligadas e ligadas circulares; * armazenar elementos
unicos em tabelas hash, dicionarios e conjuntos;
explorar o uso de arvores binarias e arvores binarias
de busca; ¢ ordenar estruturas de dados usando
algoritmos como bubble sort, selection sort, insertion
sort, merge sort e quick sort; * pesquisar elementos
em estruturas de dados usando ordenacao
sequencial e busca binaria

Compre agora e leia

http://www.mynextread.de/redirect/Amazon+%28BR%29/3036000/9788575226629/9788575227282/560ec6fa0050fcb564fefadf34be3b55

OREILLY

Padroes para
Kubernetes

Elementos reutilizaveis no design de aplicacoes
nativas de nuvem .

Bilgin lbryam
novatec Roland Hulk

Padroes para Kubernetes

Ibryam, Bilgin
9788575228159
272 paginas

Compre agora e leia

O modo como os desenvolvedores projetam,
desenvolvem e executam software mudou
significativamente com a evolucao dos
microsservicos e dos contéineres. Essas arquiteturas
modernas oferecem novas primitivas distribuidas que
exigem um conjunto diferente de praticas, distinto
daquele com o qual muitos desenvolvedores, lideres
técnicos e arquitetos estao acostumados. Este guia
apresenta padroes comuns e reutilizaveis, além de
principios para o design e a implementacao de
aplicacdes nativas de nuvem no Kubernetes. Cada
padrao inclui uma descricao do problema e uma
solucao especifica no Kubernetes. Todos os padroes
acompanham e sao demonstrados por exemplos
concretos de codigo. Este livro é ideal para
desenvolvedores e arquitetos que ja tenham
familiaridade com os conceitos basicos do
Kubernetes, e que queiram aprender a solucionar
desafios comuns no ambiente nativo de nuvem,
usando padroes de projeto de uso comprovado. Vocé
conhecera as seguintes classes de padroes:
Padrdes basicos, que incluem principios e praticas

http://www.mynextread.de/redirect/Amazon+%28BR%29/3036000/9788575226629/9788575228159/d6086f378b7324b5f6cf02058e3b0a6d

essenciais para desenvolver aplicacoes nativas de
nuvem com base em contéineres. ¢ Padrdes
comportamentais, que exploram conceitos mais
especificos para administrar contéineres e interacoes
com a plataforma. ¢ Padrdes estruturais, que ajudam
VOCé a organizar contéineres em um Pod para tratar
casos de uso especificos. * Padroes de configuracao,
que oferecem insights sobre como tratar as
configuracoes das aplicacdes no Kubernetes. «
Padroes avancados, que incluem assuntos mais
complexos, como operadores e escalabilidade
automatica (autoscaling).

Compre agora e leia

http://www.mynextread.de/redirect/Amazon+%28BR%29/3036000/9788575226629/9788575228159/d6086f378b7324b5f6cf02058e3b0a6d

CANDLESTICK

novatec

Candlestick

Debastiani, Carlos Alberto
9788575225943
200 paginas

Compre agora e leia

A analise dos graficos de Candlestick € uma técnica
amplamente utilizada pelos operadores de bolsas de
valores no mundo inteiro. De origem japonesa, este
refinado método avalia o comportamento do
mercado, sendo muito eficaz na previsao de
mudancas em tendéncias, o que permite desvendar
fatores psicoldgicos por tras dos graficos,
incrementando a lucratividade dos investimentos.
Candlestick - Um método para ampliar lucros na
Bolsa de Valores é uma obra bem estruturada e
totalmente ilustrada. A preocupacao do autor em
utilizar uma linguagem clara e acessivel a torna leve
e de facil assimilacao, mesmo para leigos. Cada
padrao de analise abordado possui um modelo com
sua figura classica, facilitando a identificacao. Depois
das caracteristicas, das peculiaridades e dos fatores
psicolégicos do padrao, € apresentado o grafico de
um caso real aplicado a uma acao negociada na
Bovespa. Este livro possui, ainda, um indice resumido
dos padrdes para pesquisa rapida na utilizacao
cotidiana.

http://www.mynextread.de/redirect/Amazon+%28BR%29/3036000/9788575226629/9788575225943/95b0e489b2490ae545bbd326179aa7c3

Compre agora e leia

http://www.mynextread.de/redirect/Amazon+%28BR%29/3036000/9788575226629/9788575225943/95b0e489b2490ae545bbd326179aa7c3

AVALIARDO
EMPRESAS

INVESTINDO

Avaliando Empresas, Investindo em
Acoes

Debastiani, Carlos Alberto
9788575225974
224 paginas

Compre agora e leia

Avaliando Empresas, Investindo em Acdes é um livro
destinado a investidores que desejam conhecer, em
detalhes, os métodos de analise que integram a linha
de trabalho da escola fundamentalista, trazendo ao
leitor, em linguagem clara e acessivel, o
conhecimento profundo dos elementos necessarios a
uma analise criteriosa da saude financeira das
empresas, envolvendo indicadores de balanco e de
mercado, analise de liquidez e dos riscos pertinentes
a fatores setoriais e conjunturas econémicas nacional
e internacional. Por meio de exemplos praticos e
ilustracdes, os autores exercitam os conceitos
tedricos abordados, desde os fundamentos basicos
da economia até a formulacao de estratégias para
investimentos de longo prazo.

Compre agora e leia

http://www.mynextread.de/redirect/Amazon+%28BR%29/3036000/9788575226629/9788575225974/5b1e661bd22da993d926714410664acd
http://www.mynextread.de/redirect/Amazon+%28BR%29/3036000/9788575226629/9788575225974/5b1e661bd22da993d926714410664acd

Marcos Abe

MANUAL DE

-

ANALISE
TECNICA

ESSENCIA E ESTRATE

TUDD O QUE UM INVESTIDOR PRECISA SABER PARA
PROSPERAR NA BOLSA DE VALORES ATE EM TEMPOS DE CRISE

Manual de Andalise Técnica

Abe, Marcos
9788575227022
256 paginas

Compre agora e leia

Este livro aborda o tema Investimento em Acodes de
maneira inédita e tem o objetivo de ensinar os
investidores a lucrarem nas mais diversas condicoes
do mercado, inclusive em tempos de crise. Ensinara
ao leitor que, para ganhar dinheiro, nao importa se o
mercado esta em alta ou em baixa, mas sim saber
como operar em cada situacao. Com o Manual de
Andlise Técnica o leitor aprendera: - os conceitos
classicos da Analise Técnica de forma diferenciada,
de maneira que assimile nao sé os principios, mas
gue desenvolva o raciocinio necessario para utilizar
os graficos como meio de interpretar os movimentos
da massa de investidores do mercado; - identificar
oportunidades para lucrar na bolsa de valores, a
longo e curto prazo, até mesmo em mercados
baixistas; um sistema de investimentos completo
com estratégias para abrir, conduzir e fechar
operacoes, de forma que seja possivel maximizar
lucros e minimizar prejuizos; - estruturar e proteger
operacoes por meio do gerenciamento de capital.
Destina-se a iniciantes na bolsa de valores e

http://www.mynextread.de/redirect/Amazon+%28BR%29/3036000/9788575226629/9788575227022/ee51d146a88d9e51f76f0b07087d8d5a

investidores que ainda nao desenvolveram uma
metodologia prépria para operar lucrativamente.

Compre agora e leia

http://www.mynextread.de/redirect/Amazon+%28BR%29/3036000/9788575226629/9788575227022/ee51d146a88d9e51f76f0b07087d8d5a

